login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060398
Values of k associated with A060397.
5
1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 2, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 0, 0, 1, 0, 4, 1, 0, 3, 1, 0, 1, 1, 0, 2, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 4, 1, 0, 1, 1, 0, 2, 1, 0, 0, 1, 0, 3, 1, 0, 2, 1, 0, 1, 1, 0, 2
OFFSET
0,15
LINKS
Carlos Rivera, Conjecture 17. The Ludovicus conjecture about the Euler trinomials, The Prime Puzzles & Problems Connection.
MATHEMATICA
a[n_] := Switch[n, 0, 1, _, Module[{f, kmax0 = 2}, f[kmax_] := f[kmax] = MinimalBy[Table[{k, FactorInteger[k^2 + k + 2 n + 1][[1, 1]]}, {k, 0, kmax}], Last, 1]; f[kmax = kmax0]; f[kmax = 2 kmax]; While[f[kmax] != f[kmax/2], kmax = 2 kmax]; f[kmax][[1, 1]]]];
Table[a[n], {n, 0, 105}] (* Jean-François Alcover, Aug 15 2022 *)
CROSSREFS
Cf. A060397.
Sequence in context: A086017 A350532 A000161 * A253242 A359814 A359815
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 04 2001
EXTENSIONS
More terms from T. D. Noe, Mar 12 2007
STATUS
approved