login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060397
Smallest prime that divides k^2 + k + 2n + 1 for k = 0,1,2,....
2
3, 3, 5, 3, 3, 11, 3, 3, 17, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 41, 3, 3, 7, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 7, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 11, 3, 3, 7, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 11, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 11, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 7, 3, 3
OFFSET
0,1
COMMENTS
Bisection of A060395.
LINKS
Carlos Rivera, Conjecture 17. The Ludovicus conjecture about the Euler trinomials, The Prime Puzzles & Problems Connection.
FORMULA
a(n)=3 if n is equal to 0 or 1 mod 3.
EXAMPLE
To obtain a(3), note that x^2+x+7 takes the values 7,9,13,19,... for k=0,1,2,... and the smallest prime dividing these numbers is 3.
MATHEMATICA
a[n_] := Switch[n, 0, 3, _, Module[{f, kmax0 = 2}, f[kmax_] := f[kmax] = MinimalBy[Table[{k, FactorInteger[k^2 + k + 2 n + 1][[1, 1]]}, {k, 0, kmax}], Last, 1]; f[kmax = kmax0]; f[kmax = 2 kmax]; While[f[kmax] != f[kmax/2], kmax = 2 kmax]; f[kmax][[1, 2]]]];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Aug 15 2022 *)
CROSSREFS
Cf. A060380, A060392-A060398. A060398 gives values of k.
Sequence in context: A113965 A162277 A365512 * A352351 A359421 A014780
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Apr 04 2001
EXTENSIONS
More terms from Matthew Conroy, Apr 18 2001
STATUS
approved