login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060396 Values of k associated with A060395. 1
1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,30
COMMENTS
a(2n) = 0 for n >= 1. a(3n) = 0 for n >= 1. a(6n+1) = 1 for n >= 0. - Nathaniel Johnston, Apr 30 2011
LINKS
Carlos Rivera, Conjecture 17. The Ludovicus conjecture about the Euler trinomials, The Prime Puzzles & Problems Connection.
MATHEMATICA
a[n_] := Switch[n, 0, 1, 1, 1, _, Module[{f, kmax0 = 2}, f[kmax_] := f[kmax] = MinimalBy[Table[{k, FactorInteger[k^2 + k + n][[1, 1]]}, {k, 0, kmax}], Last, 1]; f[kmax = kmax0]; f[kmax = 2 kmax]; While[f[kmax] != f[kmax/2], kmax = 2 kmax]; f[kmax][[1, 1]]]];
Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Aug 15 2022 *)
CROSSREFS
Sequence in context: A204293 A206479 A219484 * A353353 A195470 A324902
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 04 2001
EXTENSIONS
Name corrected and a(15)-a(97) from Nathaniel Johnston, Apr 30 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 23:31 EDT 2024. Contains 374544 sequences. (Running on oeis4.)