The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A350532 Triangle read by rows: T(n,k) is the number of degree-n polynomials over Z/2Z of the form f(x)^m for some m > 1 with exactly k nonzero terms; 1 <= k <= n + 1. 0
 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 2, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 3, 3, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 4, 6, 4, 1, 0, 0, 0, 0, 1, 0, 0, 4, 1, 0, 2, 0, 0, 0, 1, 5, 10, 11, 5, 1, 0, 0, 1, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,12 COMMENTS For n >= 1, row sums are given by A152061. Conjecture: T(n,n+1) = 1 if and only if n is a Mersenne prime (A000668). Conjecture: T(2*n,2) = n. Conjecture: T(2*n,3) = (n^2 - n)/2 for n >= 1. LINKS Table of n, a(n) for n=0..65. EXAMPLE n\k| 1 2 3 4 5 6 7 8 9 10 11 ---+---------------------------------- 0 | 1 1 | 0, 0 2 | 1, 1, 0 3 | 1, 0, 0, 1 4 | 1, 2, 1, 0, 0 5 | 1, 0, 0, 1, 0, 0 6 | 1, 3, 3, 2, 1, 0, 0 7 | 1, 0, 0, 0, 0, 0, 0, 1 8 | 1, 4, 6, 4, 1, 0, 0, 0, 0 9 | 1, 0, 0, 4, 1, 0, 2, 0, 0, 0 10 | 1, 5, 10, 11, 5, 1, 0, 0, 1, 0, 0 The T(6,4) = 2 degree-6 polynomials over Z/2Z with k=4 nonzero terms are 1 + x^2 + x^4 + x^6 = (1 + x^2)^3 = (1 + x + x^2 + x^3)^2, and x^3 + x^4 + x^5 + x^6 = (x + x^2)^3. CROSSREFS Cf. A000668, A152061. Sequence in context: A107782 A368413 A086017 * A000161 A060398 A253242 Adjacent sequences: A350529 A350530 A350531 * A350533 A350534 A350535 KEYWORD nonn,tabl AUTHOR Peter Kagey, Jan 03 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 13 12:36 EDT 2024. Contains 374284 sequences. (Running on oeis4.)