login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350530
Square array read by antidiagonals downwards: T(n,k) is the number of sequences of length n with terms in 0..k such that the (n-1)-st difference is zero, but no earlier iterated difference is zero, n, k >= 1.
2
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 0, 0, 0, 1, 4, 2, 0, 0, 0, 1, 5, 4, 0, 0, 0, 0, 1, 6, 8, 0, 0, 0, 0, 0, 1, 7, 12, 4, 0, 0, 0, 0, 0, 1, 8, 18, 12, 8, 4, 0, 0, 0, 0, 1, 9, 24, 28, 36, 28, 4, 0, 0, 0, 0, 1, 10, 32, 52, 84, 116, 48, 16, 0, 0, 0, 0
OFFSET
1,8
COMMENTS
For fixed n, T(n,k) is a quasi-polynomial of degree n-1 in k. For example, T(4,k) = (8/27)*k^3 - 2*k^2 + b(k)*k + c(k), where b and c are periodic with period 3.
LINKS
EXAMPLE
Array begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10
---+--------------------------------------------------
1 | 1 1 1 1 1 1 1 1 1 1 1
2 | 0 1 2 3 4 5 6 7 8 9 10
3 | 0 0 0 2 4 8 12 18 24 32 40
4 | 0 0 0 0 0 4 12 28 52 84 132
5 | 0 0 0 0 0 8 36 84 176 332 568
6 | 0 0 0 0 4 28 116 308 704 1396 2548
7 | 0 0 0 0 4 48 232 728 2104 4940 11008
8 | 0 0 0 0 16 100 556 1936 7092 19908 49364
9 | 0 0 0 0 12 176 1348 6588 23356 74228 202504
10 | 0 0 0 0 8 268 2492 15544 72820 259800 842688
For n = 4 and k = 6, the following T(4,6) = 12 sequences are counted: 1454, 1564, 2125, 2565, 3126, 3236, 4541, 4651, 5212, 5652, 6213, 6323.
PROG
(Python)
def A350530_col(k, nmax):
d = []
c = [0]*nmax
while 1:
if not d or all(d[-1][:-1]):
if d and d[-1][-1] == 0:
c[len(d)-1] += 1 + (0 != 2*d[0][0] != k+1)
elif len(d) < nmax:
d.append([-1])
for i in range(len(d)-1):
d[-1].append(d[-1][-1]-d[-2][i])
while d and d[-1][0] == k:
d.pop()
if not d or len(d) == 1 and 2*d[0][0] >= k: return c
for i in range(len(d)):
d[-1][i] += 1
CROSSREFS
Rows: A000012 (n=1), A001477 (n=2), A007590 (n=3).
Columns: A000007 (k=0), A019590 (k=1), A130706 (k=2).
Sequence in context: A260019 A153036 A258651 * A258850 A182114 A122950
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved