login
A350529
Square array read by antidiagonals downwards: T(n,k) is the number of sequences of length n with terms in 1..k such that no iterated difference is zero, n, k >= 0.
3
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 6, 2, 0, 0, 1, 5, 12, 10, 2, 0, 0, 1, 6, 20, 32, 16, 2, 0, 0, 1, 7, 30, 72, 86, 26, 2, 0, 0, 1, 8, 42, 138, 256, 232, 42, 2, 0, 0, 1, 9, 56, 234, 624, 906, 622, 68, 2, 0, 0
OFFSET
0,8
COMMENTS
For fixed n, T(n,k) is a quasi-polynomial of degree n in k. For example, T(4,k) = k^4 - (116/27)*k^3 + (25/3)*k^2 + b(k)*k + c(k), where b and c are periodic with period 6.
LINKS
EXAMPLE
n\k| 0 1 2 3 4 5 6 7 8 9 10
---+--------------------------------------------------------------------------
0 | 1 1 1 1 1 1 1 1 1 1 1
1 | 0 1 2 3 4 5 6 7 8 9 10
2 | 0 0 2 6 12 20 30 42 56 72 90
3 | 0 0 2 10 32 72 138 234 368 544 770
4 | 0 0 2 16 86 256 624 1278 2370 4030 6462
5 | 0 0 2 26 232 906 2790 6900 15096 29536 53678
6 | 0 0 2 42 622 3180 12366 36964 95494 215146 443464
7 | 0 0 2 68 1662 11116 54572 197294 601986 1562274 3652850
8 | 0 0 2 110 4426 38754 240278 1051298 3788268 11325490 30041458
9 | 0 0 2 178 11774 134902 1056546 5595236 23814458 82024662 246853482
10 | 0 0 2 288 31316 469306 4643300 29762654 149631992 593798912 2027577296
For n = 4 and k = 3, the following T(4,3) = 16 sequences are counted: 1212, 1213, 1312, 1313, 1323, 2121, 2131, 2132, 2312, 2313, 2323, 3121, 3131, 3132, 3231, 3232.
PROG
(Python)
def A350529_col(k, nmax):
d = []
c = [0]*(nmax+1)
while 1:
if not d or all(d[-1]):
c[len(d)] += 1 + (bool(d) and 2*d[0][0] != k+1)
if len(d) < nmax:
d.append([0])
for i in range(len(d)-1):
d[-1].append(d[-1][-1]-d[-2][i])
while d and d[-1][0] == k:
d.pop()
if not d or len(d) == 1 and 2*d[0][0] >= k: return c
for i in range(len(d)):
d[-1][i] += 1
CROSSREFS
Rows: A000012 (n=0), A001477 (n=1), A002378 (n=2), A055232 (terms of row n=3 divided by 2).
Columns: A000007 (k=0), A019590 (k=1), A040000 (k=2), A054886 (k=3).
Sequence in context: A217315 A217593 A353434 * A322279 A350365 A331923
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved