login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217315
Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 1 or if k-n >= 8, T(0,k)= 1 if 0<=k<=7, T(n,k) = T(n-1,k) + T(n,k-1).
2
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 1, 5, 9, 5, 0, 0, 0, 1, 6, 14, 14, 0, 0, 0, 0, 0, 7, 20, 28, 14, 0, 0, 0, 0, 0, 7, 27, 48, 42, 0, 0, 0, 0, 0, 0, 0, 34, 75, 90, 42, 0, 0, 0, 0, 0, 0, 0, 34, 109, 165, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 143, 274, 297, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 143, 417, 571, 429, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,8
COMMENTS
A hexagon arithmetic of E. Lucas.
FORMULA
T(n,n) = A080938(n).
T(n,n+1) = A080938(n+1).
T(n,n+2) = A094826(n+1).
T(n,n+3) = A094827(n+1).
T(n,n+4) = A094828(n+2).
T(n,n+5) = A094829(n+2).
T(n,n+6) = T(n,n+7) = A094256(n+1).
Sum_{k, 0<=k<=n} T(n-k,k) = A061551(n).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ... row n=0
0, 1, 2, 3, 4, 5, 6, 7, 7, 0, 0, 0, 0, 0, 0, ... row n=1
0, 0, 2, 5, 9, 14, 20, 27, 34, 34, 0, 0, 0, ... row n=2
0, 0, 0, 5, 14, 28, 48, 75, 109, 143, 143, 0, 0, ... row n=3
0, 0, 0, 0, 14, 42, 90, 165, 274, 417, 560, 560, 0, ... row n=4
0, 0, 0, 0, 0, 42, 132, 297, 571, 988, 1548, 2108, 2108, 0, ... row n=5
...
MATHEMATICA
t[0, k_ /; k <= 7] = 1; t[n_, k_] /; k < n || k > n+7 = 0; t[n_, k_] := t[n, k] = t[n-1, k] + t[n, k-1]; Table[t[n-k, k], {n, 0, 13}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 18 2013 *)
CROSSREFS
Cf. Similar sequence: A216230, A216228, A216226, A216238, A216054, A217257.
Sequence in context: A220062 A216054 A217257 * A217593 A353434 A350529
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Mar 17 2013
STATUS
approved