

A217257


Square array T, read by antidiagonals: T(n,k) = 0 if nk >= 1 or if kn >= 7, T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,3) = T(0,4) = T(0,5) = T(0,6) = 1, T(n,k) = T(n1,k) + T(n,k1).


3



1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 1, 5, 9, 5, 0, 0, 0, 0, 6, 14, 14, 0, 0, 0, 0, 0, 6, 20, 28, 14, 0, 0, 0, 0, 0, 0, 26, 48, 42, 0, 0, 0, 0, 0, 0, 0, 26, 74, 90, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 164, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 264, 296, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 364, 560, 428, 0, 0, 0, 0, 0, 0, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,8


COMMENTS

A hexagon arithmetic of E. Lucas.


REFERENCES

E. Lucas, Théorie des nombres, A. Blanchard, Paris, 1958, p.89


LINKS

Table of n, a(n) for n=0..105.
E. Lucas, Théorie des nombres, Tome 1, Jacques Gabay, Paris, p. 89


FORMULA

T(n,n) = A024175(n).
T(n,n+1) = A024175(n+1).
T(n,n+2) = A094803(n+1).
T(n,n+3) = A007070(n).
T(n,n+4) = A094806(n+2).
T(n,n+5) = T(n,n+6) = A094811(n+2).
Sum_{k, 0<=k<=n} T(nk,k) = A030436(n).


EXAMPLE

Square array begins:
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=0
0, 1, 2, 3, 4, 5, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=1
0, 0, 2, 5, 9, 14, 20, 26, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=2
0, 0, 0, 5, 14, 28, 48, 74, 100, 100, 0, 0, 0, 0, 0, 0, 0, ... row n=3
0, 0, 0, 0, 14, 42, 90, 162, 264, 364, 364, 0, 0, 0, 0, 0, ... row n=4
0, 0, 0, 0, 0, 42, 132, 296, 560, 924, 1288, 1288, 0, 0, 0, ... row n=5
...


CROSSREFS

Cf. similar sequences: A216230, A216228, A216226, A216238, A216054.
Sequence in context: A157608 A220062 A216054 * A217315 A217593 A322279
Adjacent sequences: A217254 A217255 A217256 * A217258 A217259 A217260


KEYWORD

nonn,tabl


AUTHOR

Philippe Deléham, Mar 17 2013


STATUS

approved



