|
|
A024175
|
|
Expansion of (x^3 - 6*x^2 + 5*x - 1)/((2*x - 1)*(2*x^2 - 4*x + 1))
|
|
10
|
|
|
1, 1, 2, 5, 14, 42, 132, 428, 1416, 4744, 16016, 54320, 184736, 629280, 2145600, 7319744, 24979584, 85262464, 291057920, 993641216, 3392317952, 11581727232, 39541748736, 135002491904, 460924372992, 1573688313856, 5372896120832
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Number of (s(0), s(1), ..., s(2*n)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1, 2, ..., 2*n, s(0) = 1, s(2*n) = 1. - Herbert Kociemba, Jun 11 2004
Counts all paths of length (2*n), n >= 0, starting and ending at the initial node on the path graph P_7, see the Maple program. - Johannes W. Meijer, May 29 2010
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (1/4)*Sum_{r=1..7} sin(r*Pi/8)^2*(2*cos(r*Pi/8))^(2n), n >= 1.
a(n) = 6*a(n-1) - 10*a(n-2) + 4*a(n-3), n >= 4. (End)
a(n) = (1/4)*((2 + sqrt(2))^(n - 1) + (2 - sqrt(2))^(n - 1) + 2^n) for n >= 1. [Richard Choulet, Apr 19 2010]
a(n) = 2^(n - 2) + A006012(n-1)/2, n > 0. - R. J. Mathar, Mar 14 2011
G.f.: 1 / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x)))))). - Michael Somos, May 12 2012
|
|
EXAMPLE
|
1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 428*x^7 + ...
|
|
MAPLE
|
with(GraphTheory): G:=PathGraph(7): A:= AdjacencyMatrix(G): nmax:=26; n2:=2*nmax: for n from 0 to n2 do B(n):=A^n; a(n):=B(n)[1, 1]; od: seq(a(2*n), n=0..nmax); # Johannes W. Meijer, May 29 2010
|
|
MATHEMATICA
|
CoefficientList[Series[(x^3-6*x^2+5*x-1)/((2*x-1)*(2*x^2-4*x+1)), {x, 0, 30}], x] (* Vincenzo Librandi, May 10 2012 *)
|
|
PROG
|
(PARI) {a(n) = local(A); A = 1; for( i=1, 6, A = 1 / (1 - x*A)); polcoeff( A + x * O(x^n), n)} /* Michael Somos, May 12 2012 */
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|