|
|
A024178
|
|
a(n) = floor(3rd elementary symmetric function of 2,3,...,n+3)/(2+3+...+n+3)).
|
|
1
|
|
|
2, 11, 29, 61, 115, 196, 312, 474, 690, 971, 1331, 1781, 2335, 3010, 3820, 4782, 5916, 7239, 8771, 10535, 12551, 14842, 17434, 20350, 23616, 27261, 31311, 35795, 40745, 46190, 52162, 58696, 65824, 73581, 82005, 91131, 100997, 111644, 123110, 135436
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Ivan Neretin, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (4,-6,5,-5,6,-4,1).
|
|
FORMULA
|
G.f.: x(x^3-3x^2+3x+2)/[(1-x^3)(1-x)^4].
a(n) = floor(1/24 n (n + 1) (n^2 + 9 n + 22)). - Ivan Neretin, May 21 2018
|
|
MATHEMATICA
|
s[n_] := 1 + Range[n + 2]
Table[Floor[SymmetricPolynomial[3, s[n]]/SymmetricPolynomial[1, s[n]]], {n, 1,
46}] (* _ Clark Kimberling_, 23 Sep 2016 *)
LinearRecurrence[{4, -6, 5, -5, 6, -4, 1}, {2, 11, 29, 61, 115, 196, 312}, 40] (* Harvey P. Dale, Dec 05 2018 *)
|
|
CROSSREFS
|
Sequence in context: A046500 A062123 A117560 * A009312 A154251 A092275
Adjacent sequences: A024175 A024176 A024177 * A024179 A024180 A024181
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Clark Kimberling
|
|
STATUS
|
approved
|
|
|
|