The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024179 Integer part of ((4th elementary symmetric function of 2,3,...,n+4)/(2+3+...+n+4)). 1
 8, 52, 189, 526, 1242, 2609, 5024, 9043, 15411, 25108, 39392, 59842, 88414, 127496, 179963, 249241, 339377, 455103, 601915, 786146, 1015050, 1296888, 1641014, 2057967, 2559573, 3159036, 3871051, 4711904, 5699589, 6853918, 8196644, 9751581 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The 4th elementary symmetric function of 2,3,..n+4 is the polynomial n*(n+1)*(n+2)*(n+3)*(15*n^4+330*n^3+2765*n^2+10482*n+15208)/5760. The denominator is (n+3)*(n+6)/2. The sequence is the rounded down ratio of both. - R. J. Mathar, Oct 01 2016 LINKS Ivan Neretin, Table of n, a(n) for n = 1..10000 FORMULA a(n) = floor(1/2880 n (n+1) (n+2) (15 n^4 + 330 n^3 + 2765 n^2 + 10482 n + 15208)/(n + 6)). - Muniru A Asiru, May 20 2018 MAPLE SymmPolyn := proc(L::list, n::integer)         local c, a, sel;         a :=0 ;         sel := combinat[choose](nops(L), n) ;         for c in sel do                 a := a+mul(L[e], e=c) ;         end do:         a; end proc: A024179 := proc(n)         [seq(k, k=2..n+4)] ;         2*SymmPolyn(%, 4)/(n+6)/(n+3) ;         floor(%) ; end proc: # R. J. Mathar, Sep 23 2016 MATHEMATICA Table[Floor[1/2880 n (n + 1) (n + 2) (15 n^4 + 330 n^3 + 2765 n^2 + 10482 n + 15208)/(n + 6)], {n, 32}] (* Ivan Neretin, May 20 2018 *) PROG (GAP) List([1..40], n->Int((1/2880)*n*(n+1)*(n+2)*(15*n^4+330*n^3+2765*n^2+10482*n+15208)/(n+6))); # Muniru A Asiru, May 20 2018 CROSSREFS Sequence in context: A302318 A035288 A303012 * A302816 A026963 A026973 Adjacent sequences:  A024176 A024177 A024178 * A024180 A024181 A024182 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 19:05 EST 2022. Contains 350480 sequences. (Running on oeis4.)