login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024181
Integer part of ((4th elementary symmetric function of 2,3,...,n+4)/(2nd elementary symmetric function of 2,3,...,n+4)).
1
1, 6, 17, 36, 66, 111, 175, 263, 380, 532, 725, 965, 1260, 1617, 2045, 2552, 3148, 3841, 4642, 5563, 6613, 7805, 9151, 10664, 12356, 14241, 16334, 18650, 21202, 24008, 27083, 30443, 34107, 38091, 42414, 47095, 52152, 57606, 63476, 69784, 76549, 83795
OFFSET
1,2
LINKS
FORMULA
a(n) = floor(1/240 n (n + 1) (15 n^4 + 330 n^3 + 2765 n^2 + 10482 n + 15208)/(3 n^2 + 35 n + 104)). - Ivan Neretin, May 20 2018
MAPLE
SymmPolyn := proc(L::list, n::integer)
local c, a, sel;
a :=0 ;
sel := combinat[choose](nops(L), n) ;
for c in sel do
a := a+mul(L[e], e=c) ;
end do:
a;
end proc:
A024181 := proc(n)
[seq(k, k=2..n+4)] ;
SymmPolyn(%, 4)/SymmPolyn(%, 2) ;
floor(%) ;
end proc: # R. J. Mathar, Sep 23 2016
MATHEMATICA
Table[Floor[1/240 n (n + 1) (15 n^4 + 330 n^3 + 2765 n^2 + 10482 n + 15208)/(3 n^2 + 35 n + 104)], {n, 42}] (* Ivan Neretin, May 20 2018 *)
PROG
(GAP) List([1..50], n->Int((1/240)*n*(n+1)*(15*n^4+330*n^3+2765*n^2+10482*n+15208)/(3*n^2+35*n+104))); # Muniru A Asiru, May 20 2018
CROSSREFS
Sequence in context: A358245 A307502 A084990 * A023663 A048208 A212980
KEYWORD
nonn
STATUS
approved