login
A024181
Integer part of ((4th elementary symmetric function of 2,3,...,n+4)/(2nd elementary symmetric function of 2,3,...,n+4)).
1
1, 6, 17, 36, 66, 111, 175, 263, 380, 532, 725, 965, 1260, 1617, 2045, 2552, 3148, 3841, 4642, 5563, 6613, 7805, 9151, 10664, 12356, 14241, 16334, 18650, 21202, 24008, 27083, 30443, 34107, 38091, 42414, 47095, 52152, 57606, 63476, 69784, 76549, 83795
OFFSET
1,2
LINKS
FORMULA
a(n) = floor(1/240 n (n + 1) (15 n^4 + 330 n^3 + 2765 n^2 + 10482 n + 15208)/(3 n^2 + 35 n + 104)). - Ivan Neretin, May 20 2018
MAPLE
SymmPolyn := proc(L::list, n::integer)
local c, a, sel;
a :=0 ;
sel := combinat[choose](nops(L), n) ;
for c in sel do
a := a+mul(L[e], e=c) ;
end do:
a;
end proc:
A024181 := proc(n)
[seq(k, k=2..n+4)] ;
SymmPolyn(%, 4)/SymmPolyn(%, 2) ;
floor(%) ;
end proc: # R. J. Mathar, Sep 23 2016
MATHEMATICA
Table[Floor[1/240 n (n + 1) (15 n^4 + 330 n^3 + 2765 n^2 + 10482 n + 15208)/(3 n^2 + 35 n + 104)], {n, 42}] (* Ivan Neretin, May 20 2018 *)
PROG
(GAP) List([1..50], n->Int((1/240)*n*(n+1)*(15*n^4+330*n^3+2765*n^2+10482*n+15208)/(3*n^2+35*n+104))); # Muniru A Asiru, May 20 2018
CROSSREFS
Sequence in context: A358245 A307502 A084990 * A023663 A048208 A212980
KEYWORD
nonn
STATUS
approved