login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307502
Self-convolution of the Dedekind psi function (A001615).
0
0, 1, 6, 17, 36, 64, 108, 172, 240, 340, 444, 612, 744, 980, 1164, 1504, 1704, 2172, 2388, 2964, 3288, 3968, 4272, 5272, 5520, 6624, 7104, 8276, 8640, 10404, 10572, 12480, 13032, 14988, 15300, 18204, 18048, 21004, 21636, 24616, 24648, 29036, 28452, 32768, 33552, 37488
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Dedekind Function
FORMULA
G.f.: (Sum_{k>=1} mu(k)^2*x^k/(1 - x^k)^2)^2.
a(n) = Sum_{k=1..n-1} A001615(k)*A001615(n-k).
MATHEMATICA
Rest[nmax = 46; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k/(1 - x^k)^2, {k, 1, nmax}]^2, {x, 0, nmax}], x]]
psi[n_] := psi[n] = Sum[MoebiusMu[n/d]^2 d, {d, Divisors @ n}]; a[n_] := a[n] = Sum[psi[k] psi[n - k], {k, 1, n - 1}]; Table[a[n], {n, 1, 46}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 11 2019
STATUS
approved