login
A307501
Expansion of Product_{k>=1} (1 + (x*(1 - x))^k).
5
1, 1, 0, 0, -3, 1, -1, 3, 3, 0, -12, 15, -20, 5, 53, -113, 180, -241, 153, 173, -652, 787, 628, -4801, 11635, -18699, 20775, -12315, -6109, 21253, -7015, -61060, 174382, -260676, 190623, 130141, -549572, 399845, 1577502, -6670524, 14603574, -21111528, 16110192, 14794188, -82586174
OFFSET
0,5
LINKS
FORMULA
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d ) * (x*(1 - x))^k/k).
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(k,n-k)*A000009(k).
MATHEMATICA
nmax = 44; CoefficientList[Series[Product[(1 + (x (1 - x))^k), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 44; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k/d + 1) d, {d, Divisors[k]}] (x (1 - x))^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
Table[Sum[(-1)^(n - k) Binomial[k, n - k] PartitionsQ[k], {k, 0, n}], {n, 0, 44}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Apr 11 2019
STATUS
approved