This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A307496 Expansion of Product_{k>=1}  (1 + ((1 - sqrt(1 - 4*x))/2)^k). 1
 1, 1, 2, 6, 18, 57, 187, 629, 2156, 7502, 26427, 94053, 337653, 1221260, 4445892, 16277089, 59893052, 221370725, 821499759, 3059620076, 11432831745, 42848889316, 161032785057, 606710026659, 2291156662259, 8670805904186, 32879697168622, 124910667052026, 475357627716839, 1811931609379926 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Catalan transform of A000009 (number of partitions into distinct parts). LINKS FORMULA G.f.: Product_{k>=1}  1/(1 - ((1 - sqrt(1 - 4*x))/2)^(2*k-1)). Sum_{n>=0} a(n)*(x*(1 - x))^n = g.f. of A000009. a(n) = (1/n) * Sum_{k=1..n} binomial(2*n-k-1,n-k)*k*A000009(k) for n > 0. MATHEMATICA nmax = 29; CoefficientList[Series[Product[(1 + ((1 - Sqrt[1 - 4 x])/2)^k), {k, 1, nmax}], {x, 0, nmax}], x] nmax = 29; CoefficientList[Series[Product[1/(1 - ((1 - Sqrt[1 - 4 x])/2)^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] Join[{1}, Table[1/n Sum[Binomial[2n - k - 1, n - k] k PartitionsQ[k], {k, n}], {n, 29}]] CROSSREFS Cf. A000009, A100100, A286955. Sequence in context: A126983 A104629 A000957 * A125305 A273203 A148458 Adjacent sequences:  A307493 A307494 A307495 * A307497 A307498 A307499 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Apr 10 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 19:31 EST 2019. Contains 329809 sequences. (Running on oeis4.)