login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286955
n-vertex sequences of plane forests with nondecreasing numbers of trees.
6
1, 1, 3, 9, 29, 96, 326, 1127, 3952, 14019, 50208, 181275, 659039, 2410433, 8862750, 32739168, 121443136, 452167865, 1689237104, 6330103627, 23787215202, 89616350271, 338417312294, 1280739676563, 4856711761475, 18451630811041, 70223495698892, 267691953822783
OFFSET
0,3
COMMENTS
Enumerates Part[Cat], the substitution of Cat for atoms of Part, where Part is the set of integer partitions (A000041), and Cat is any set counted by the 1-based Catalan numbers (A000108 shifted).
LINKS
FORMULA
G.f.: Product_{k>0} 1/(1 - ((1 - sqrt(1 - 4*x))/2)^k), the composition of the g.f. for A000041 with x times the g.f. for A000108.
a(n) ~ c * 4^n / n^(3/2), where c = 1/sqrt(Pi) * Sum_{k>=0} k*A000041(k)/2^(k+1) = 2.680434829690402658212615372294526133126515771886321123341424399596963885434... - Vaclav Kotesovec, Jun 02 2018, extended Aug 01 2022
EXAMPLE
a(3) = 9, consisting of (1,1,1), (1,2), (2,1), (3a), (3b), (1)(1,1), (1)(2), (2)(1), and (1)(1)(1), where 1 is the one-vertex tree, 2 is the two-vertex tree, 3a and 3b are the two three-vertex trees, and parentheses record the partitioning into forests. (1,1)(1) is excluded because the numbers of trees per forest decreases.
MATHEMATICA
m = 20; CoefficientList[Series[Product[1/(1-((1-Sqrt[1-4x])/2)^k), {k, m}], {x, 0, m}], x]
nmax = 30; CoefficientList[Series[1/QPochhammer[(1 - Sqrt[1 - 4*x])/2], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 10 2020 *)
Join[{1}, Table[Sum[(k/(2*n - k))*Binomial[2*n - k, n - k]*PartitionsP[k], {k, 0, n}], {n, 1, 30}]] (* Vaclav Kotesovec, Jul 31 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
David Bevan, May 22 2017
STATUS
approved