The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A071736 Expansion of (1+x^3*C^3)*C^3, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108. 2
 1, 3, 9, 29, 96, 324, 1111, 3861, 13572, 48178, 172482, 622098, 2258416, 8246190, 30264435, 111585765, 413126460, 1535267250, 5724840990, 21413721510, 80326153440, 302105210160, 1138957917318, 4303550907234, 16294686579016 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) = number of Dyck (n+3)-paths whose initial ascent has length divisible by 3. For example, UUUUDDUDDD has initial ascent of length 4 and a(1) counts UUUDUDDD, UUUDDUDD, UUUDDDUD. - David Callan, Jul 25 2005 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA a(n) ~ 15*4^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 21 2014 MATHEMATICA CoefficientList[Series[(1 + x^3 ((1 - (1 - 4 x)^(1/2))/(2 x))^3) ((1 - (1 - 4 x)^(1/2))/(2 x))^3, {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *) CROSSREFS Sequence in context: A289448 A071732 A289804 * A286955 A148938 A082306 Adjacent sequences:  A071733 A071734 A071735 * A071737 A071738 A071739 KEYWORD nonn AUTHOR N. J. A. Sloane, Jun 06 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 22:42 EST 2021. Contains 349526 sequences. (Running on oeis4.)