login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A307495 Expansion of Sum_{k>=0} k!*((1 - sqrt(1 - 4*x))/2)^k. 0
1, 1, 3, 12, 57, 312, 1950, 13848, 111069, 998064, 9957186, 109305240, 1309637274, 17006109072, 237888664572, 3566114897520, 57030565449765, 969154436550240, 17439499379433690, 331268545604793240, 6624013560942038670, 139080391965533653200, 3059323407592802838180, 70355685298375014175440 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Catalan transform of A000142 (factorial numbers).

LINKS

Table of n, a(n) for n=0..23.

FORMULA

G.f.: 1 /(1 - x*c(x)/(1 - x*c(x)/(1 - 2*x*c(x)/(1 - 2*x*c(x)/(1 - 3*x*c(x)/(1 - 3*x*c(x)/(1 - ...))))))), a continued fraction, where c(x) = g.f. of Catalan numbers (A000108).

Sum_{n>=0} a(n)*(x*(1 - x))^n = g.f. of A000142.

a(n) = (1/n) * Sum_{k=1..n} binomial(2*n-k-1,n-k)*k*k! for n > 0.

a(n) ~ exp(1) * n!. - Vaclav Kotesovec, Aug 10 2019

MATHEMATICA

nmax = 23; CoefficientList[Series[Sum[k! ((1 - Sqrt[1 - 4 x])/2)^k, {k, 0, nmax}], {x, 0, nmax}], x]

nmax = 23; CoefficientList[Series[1/(1 + ContinuedFractionK[-Floor[(k + 1)/2] (1 - Sqrt[1 - 4 x])/2, 1, {k, 1, nmax}]), {x, 0, nmax}], x]

Join[{1}, Table[1/n Sum[Binomial[2n - k - 1, n - k] k k!, {k, n}], {n, 23}]]

CROSSREFS

Cf. A000108, A000142, A013999, A100100.

Sequence in context: A014333 A185618 A027710 * A302101 A279271 A293469

Adjacent sequences:  A307492 A307493 A307494 * A307496 A307497 A307498

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Apr 10 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 19:09 EST 2019. Contains 329323 sequences. (Running on oeis4.)