login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014333
Three-fold exponential convolution of Catalan numbers with themselves.
3
1, 3, 12, 57, 306, 1806, 11508, 78147, 559962, 4201038, 32792472, 264946446, 2206077804, 18860908644, 165050642736, 1474389557739, 13413397423482, 124030117316238, 1163661348170328, 11060842687616610, 106377560784576612, 1034009073326130876
OFFSET
0,2
LINKS
FORMULA
E.g.f.: exp(6*x)*(BesselI(0,2*x) - BesselI(1,2*x))^3. - Ilya Gutkovskiy, Nov 01 2017
From Vaclav Kotesovec, Nov 13 2017: (Start)
Recurrence: (n+1)*(n+2)*(n+3)*a(n) = 4*(6*n^3 + 13*n^2 + 2*n - 3)*a(n-1) - 4*(n-1)*(44*n^2 - 16*n - 21)*a(n-2) + 192*(n-2)*(n-1)*(2*n - 3)*a(n-3).
a(n) ~ 2^(2*n) * 3^(n + 9/2) / (Pi^(3/2) * n^(9/2)). (End)
MATHEMATICA
nmax = 20; CoefficientList[Series[E^(6*x)*(BesselI[0, 2*x] - BesselI[1, 2*x])^3, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 13 2017 *)
PROG
(Magma)
m:=40;
R<x>:=PowerSeriesRing(Rationals(), m);
f:= func< x | (&+[(k+1-x)*x^(2*k)/(Factorial(k)*Factorial(k+1)): k in [0..m+2]]) >;
Coefficients(R!(Laplace( Exp(6*x)*( f(x) )^3 ))); // G. C. Greubel, Jan 06 2023
(SageMath)
m=40
def f(x): return sum((k+1-x)*x^(2*k)/(factorial(k)*factorial(k+1)) for k in range(m+2))
def A014333_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( exp(6*x)*( f(x) )^3 ).egf_to_ogf().list()
A014333_list(m) # G. C. Greubel, Jan 06 2023
CROSSREFS
KEYWORD
nonn
STATUS
approved