OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..930
FORMULA
E.g.f.: exp(6*x)*(BesselI(0,2*x) - BesselI(1,2*x))^3. - Ilya Gutkovskiy, Nov 01 2017
From Vaclav Kotesovec, Nov 13 2017: (Start)
Recurrence: (n+1)*(n+2)*(n+3)*a(n) = 4*(6*n^3 + 13*n^2 + 2*n - 3)*a(n-1) - 4*(n-1)*(44*n^2 - 16*n - 21)*a(n-2) + 192*(n-2)*(n-1)*(2*n - 3)*a(n-3).
a(n) ~ 2^(2*n) * 3^(n + 9/2) / (Pi^(3/2) * n^(9/2)). (End)
MATHEMATICA
nmax = 20; CoefficientList[Series[E^(6*x)*(BesselI[0, 2*x] - BesselI[1, 2*x])^3, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 13 2017 *)
PROG
(Magma)
m:=40;
R<x>:=PowerSeriesRing(Rationals(), m);
f:= func< x | (&+[(k+1-x)*x^(2*k)/(Factorial(k)*Factorial(k+1)): k in [0..m+2]]) >;
Coefficients(R!(Laplace( Exp(6*x)*( f(x) )^3 ))); // G. C. Greubel, Jan 06 2023
(SageMath)
m=40
def f(x): return sum((k+1-x)*x^(2*k)/(factorial(k)*factorial(k+1)) for k in range(m+2))
def A014333_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( exp(6*x)*( f(x) )^3 ).egf_to_ogf().list()
A014333_list(m) # G. C. Greubel, Jan 06 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved