|
|
A323631
|
|
Stirling transform of Pell numbers (A000129).
|
|
0
|
|
|
0, 1, 3, 12, 57, 305, 1798, 11531, 79707, 589426, 4634471, 38547861, 337734048, 3105588629, 29877483743, 299906019892, 3133423928557, 34002824654365, 382507638525838, 4452923233600903, 53561431659306039, 664728428775177890, 8500763141347126563, 111886109022440334593, 1513989730079050155936
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..24.
|
|
FORMULA
|
E.g.f.: exp(exp(x) - 1)*sinh(sqrt(2)*(exp(x) - 1))/sqrt(2).
a(n) = Sum_{k=0..n} Stirling2(n,k)*A000129(k).
a(n) = Sum_{k=0..n} binomial(n,k)*A000110(n-k)*A264037(k).
|
|
MATHEMATICA
|
FullSimplify[nmax = 24; CoefficientList[Series[Exp[Exp[x] - 1] Sinh[Sqrt[2] (Exp[x] - 1)]/Sqrt[2], {x, 0, nmax}], x] Range[0, nmax]!]
Table[Sum[StirlingS2[n, k] Fibonacci[k, 2], {k, 0, n}], {n, 0, 24}]
Table[Sum[Binomial[n, k] BellB[n - k] (BellB[k, Sqrt[2]] - BellB[k, -Sqrt[2]])/(2 Sqrt[2]), {k, 0, n}], {n, 0, 24}]
|
|
CROSSREFS
|
Cf. A000110, A000129, A263575, A263576, A264037.
Sequence in context: A117107 A159609 A128326 * A014333 A185618 A027710
Adjacent sequences: A323628 A323629 A323630 * A323632 A323633 A323634
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Ilya Gutkovskiy, Jan 21 2019
|
|
STATUS
|
approved
|
|
|
|