login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323633
Expansion of 1/Sum_{k>=0} x^(k^3).
7
1, -1, 1, -1, 1, -1, 1, -1, 0, 1, -2, 3, -4, 5, -6, 7, -7, 6, -4, 1, 3, -8, 14, -21, 28, -34, 38, -40, 38, -31, 18, 2, -29, 62, -99, 139, -178, 211, -232, 234, -210, 154, -62, -70, 242, -449, 680, -917, 1135, -1303, 1386, -1344, 1136, -725, 85, 794, -1898, 3183, -4571
OFFSET
0,11
COMMENTS
Convolution inverse of A010057.
LINKS
FORMULA
a(0) = 1; a(n) = -Sum_{k=1..n} A010057(k) * a(n-k). - Seiichi Manyama, Mar 19 2022
MAPLE
a:=series(1/add(x^(k^3), k=0..100), x=0, 59): seq(coeff(a, x, n), n=0..58); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 58; CoefficientList[Series[1/Sum[x^k^3, {k, 0, nmax}], {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = -Sum[Boole[IntegerQ[k^(1/3)]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 58}]
PROG
(PARI) my(N=66, x='x+O('x^N)); Vec(1/sum(k=0, N^(1/3), x^k^3)) \\ Seiichi Manyama, Mar 19 2022
(PARI) a(n) = if(n==0, 1, -sum(k=1, n, ispower(k, 3)*a(n-k))); \\ Seiichi Manyama, Mar 19 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jan 21 2019
STATUS
approved