login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317665
Expansion of 1/Sum_{k>=0} x^(k^2).
13
1, -1, 1, -1, 0, 1, -2, 3, -3, 1, 2, -6, 10, -11, 8, 0, -14, 29, -39, 38, -18, -22, 74, -123, 144, -110, 6, 161, -352, 491, -484, 251, 235, -896, 1528, -1825, 1452, -191, -1892, 4317, -6164, 6243, -3488, -2482, 10788, -18957, 23140, -19085, 3858, 22025, -52833, 77224, -80198, 47899
OFFSET
0,7
COMMENTS
Convolution inverse of A010052.
LINKS
FORMULA
G.f.: 2/(1 + theta_3(q)), where theta_3() is the Jacobi theta function.
a(n) = Sum_{k=0..n} (-1)^k * A337165(n,k).
a(0) = 1; a(n) = -Sum_{k=1..n} A010052(k) * a(n-k). - Seiichi Manyama, Mar 19 2022
EXAMPLE
G.f. = 1 - x + x^2 - x^3 + x^5 - 2*x^6 + 3*x^7 - 3*x^8 + x^9 + 2*x^10 - 6*x^11 + ...
MAPLE
a:=series(1/add(x^(k^2), k=0..100), x=0, 54): seq(coeff(a, x, n), n=0..53); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 53; CoefficientList[Series[1/Sum[x^k^2, {k, 0, nmax}], {x, 0, nmax}], x]
nmax = 53; CoefficientList[Series[2/(1 + QPochhammer[x^2]^5/(QPochhammer[x] QPochhammer[x^4])^2), {x, 0, nmax}], x]
nmax = 53; CoefficientList[Series[2/(1 + EllipticTheta[3, 0, q]), {q, 0, nmax}], q]
a[0] = 1; a[n_] := a[n] = -Sum[Boole[IntegerQ[Sqrt[k]]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 53}]
PROG
(PARI) seq(n)=Vec(1/(sum(k=0, sqrtint(n), x^(k^2)) + O(x*x^n))) \\ Andrew Howroyd, Aug 08 2018
(PARI) a(n) = if(n==0, 1, -sum(k=1, n, issquare(k)*a(n-k))); \\ Seiichi Manyama, Mar 19 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 08 2018
STATUS
approved