%I #37 Mar 20 2022 18:50:08
%S 1,-1,1,-1,0,1,-2,3,-3,1,2,-6,10,-11,8,0,-14,29,-39,38,-18,-22,74,
%T -123,144,-110,6,161,-352,491,-484,251,235,-896,1528,-1825,1452,-191,
%U -1892,4317,-6164,6243,-3488,-2482,10788,-18957,23140,-19085,3858,22025,-52833,77224,-80198,47899
%N Expansion of 1/Sum_{k>=0} x^(k^2).
%C Convolution inverse of A010052.
%H Seiichi Manyama, <a href="/A317665/b317665.txt">Table of n, a(n) for n = 0..10000</a>
%F G.f.: 2/(1 + theta_3(q)), where theta_3() is the Jacobi theta function.
%F a(n) = Sum_{k=0..n} (-1)^k * A337165(n,k).
%F a(0) = 1; a(n) = -Sum_{k=1..n} A010052(k) * a(n-k). - _Seiichi Manyama_, Mar 19 2022
%e G.f. = 1 - x + x^2 - x^3 + x^5 - 2*x^6 + 3*x^7 - 3*x^8 + x^9 + 2*x^10 - 6*x^11 + ...
%p a:=series(1/add(x^(k^2),k=0..100),x=0,54): seq(coeff(a,x,n),n=0..53); # _Paolo P. Lava_, Apr 02 2019
%t nmax = 53; CoefficientList[Series[1/Sum[x^k^2, {k, 0, nmax}], {x, 0, nmax}], x]
%t nmax = 53; CoefficientList[Series[2/(1 + QPochhammer[x^2]^5/(QPochhammer[x] QPochhammer[x^4])^2), {x, 0, nmax}], x]
%t nmax = 53; CoefficientList[Series[2/(1 + EllipticTheta[3, 0, q]), {q, 0, nmax}], q]
%t a[0] = 1; a[n_] := a[n] = -Sum[Boole[IntegerQ[Sqrt[k]]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 53}]
%o (PARI) seq(n)=Vec(1/(sum(k=0, sqrtint(n), x^(k^2)) + O(x*x^n))) \\ _Andrew Howroyd_, Aug 08 2018
%o (PARI) a(n) = if(n==0, 1, -sum(k=1, n, issquare(k)*a(n-k))); \\ _Seiichi Manyama_, Mar 19 2022
%Y Cf. A004402, A006456, A010052, A106507, A323633, A337165.
%K sign
%O 0,7
%A _Ilya Gutkovskiy_, Aug 08 2018