login
A181608
Smallest positive number such that, enclosed by prime(n) gives a prime, or zero if no such prime exists.
1
0, 1, 0, 2, 3, 3, 1, 2, 6, 1, 2, 3, 1, 5, 1, 3, 1, 2, 5, 1, 6, 2, 3, 1, 3, 12, 15, 4, 3, 1, 3, 1, 1, 8, 6, 3, 14, 5, 3, 6, 3, 26, 7, 2, 3, 21, 3, 3, 15, 9, 7, 1, 3, 16, 6, 1, 7, 15, 5, 9, 2, 4, 12, 12, 5, 4, 5, 8, 4, 3, 13, 1, 2, 2, 6, 6, 1, 6, 4, 3, 4, 2, 9, 5, 5, 1, 10, 6, 1, 3, 1, 6, 5, 9, 2, 3, 1, 6, 3, 5, 2, 4, 7, 4, 14, 3, 3, 3, 3
OFFSET
1,4
LINKS
EXAMPLE
a(5)=3 since prime(5)=11 and 11311 is prime.
MAPLE
read("transforms") ;
A181608 := proc(n) local p, k, l ; if n= 1 or n = 3 then return 0 ; end if; p := ithprime(n) ; for k from 0 do l := digcat2(digcat2(p, k), p) ; if isprime(%) then return k; end if; end do: end proc: # R. J. Mathar, Jan 30 2011
MATHEMATICA
Table[p = Prime[n]; If[Mod[10, p] == 0, 0, k = 0; While[!PrimeQ[FromDigits[Join[IntegerDigits[p], IntegerDigits[k], IntegerDigits[p]]]], k++]; k], {n, 109}]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Carmine Suriano, Jan 30 2011
STATUS
approved