The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263575 Stirling transform of Lucas numbers (A000032). 5
 2, 1, 4, 14, 53, 227, 1092, 5791, 33350, 206511, 1365563, 9590847, 71216713, 556861216, 4569168866, 39222394456, 351304769679, 3275433717440, 31723522878974, 318571978752719, 3311400814816987, 35573458376435132, 394404160256111139, 4507130777468928696 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..563 Eric Weisstein's MathWorld, Lucas Number. Eric Weisstein's MathWorld, Stirling Transform. Eric Weisstein's MathWorld, Bell Polynomial. FORMULA a(n) = Sum_{k=0..n} A000032(k)*Stirling2(n,k). Let phi = (1+sqrt(5))/2. a(n) = B_n(phi)+B_n(1-phi), where B_n(x) is n-th Bell polynomial. 2*B_n(phi) = a(n) + A263576*sqrt(5). E.g.f.: exp((exp(x)-1)*phi)+exp((exp(x)-1)*(1-phi)). Sum_{k=0..n} a(k)*Stirling1(n,k) = A000032(n). G.f.: Sum_{j>=0} Lucas(j)*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 06 2019 MATHEMATICA Table[Sum[LucasL[k] StirlingS2[n, k], {k, 0, n}], {n, 0, 23}] Table[Simplify[BellB[n, GoldenRatio] + BellB[n, 1 - GoldenRatio]], {n, 0, 23}] CROSSREFS Cf. A000032, A213593, A005248, A061084, A263576. Sequence in context: A102055 A232376 A350739 * A162977 A032174 A212267 Adjacent sequences: A263572 A263573 A263574 * A263576 A263577 A263578 KEYWORD nonn AUTHOR Vladimir Reshetnikov, Oct 21 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 06:04 EDT 2024. Contains 371906 sequences. (Running on oeis4.)