This site is supported by donations to The OEIS Foundation.

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162977 Number of fixed points in all reverse alternating (i.e., up-down) permutations of {1,2,...,n}. 3
 1, 2, 1, 4, 15, 62, 257, 1384, 7679, 50522, 346113, 2702764, 22022143, 199360982, 1881735169, 19391512144, 207983607807, 2404879675442, 28880901505025, 370371188237524, 4922617151619071, 69348874393137902, 1010501269355233281 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) = Sum_{k>=0} k*A162980(n,k). a(2n+1) = A162978(2n+1). LINKS Alois P. Heinz, Table of n, a(n) for n = 1..485 R. P. Stanley, Alternating permutations, Talk slides. FORMULA a(2n) = E(2n)-(-1)^n; a(2n+1) = Sum_{j=0..n}(-1)^j*E(2n+1-2j), where E(i) = A000111(i) are the Euler (or up-down) numbers. EXAMPLE a(4) = 4 because in the 5 (=A000111(4)) up-down permutations of {1,2,3,4}, namely 1423, 1324, 3412, 2413, and 2314, we have a total of 1+2+0+0+1=4 fixed points. MAPLE E := sec(x)+tan(x): Eser := series(E, x = 0, 30): for n from 0 to 27 do E[n] := factorial(n)*coeff(Eser, x, n) end do: for n to 12 do a[2*n] := E[2*n]-(-1)^n end do: for n from 0 to 12 do a[2*n+1] := add((-1)^j*E[2*n+1-2*j], j = 0 .. n) end do: seq(a[n], n = 1 .. 25); # second Maple program: b:= proc(u, o) option remember; `if`(u+o=0, 1,       add(b(o-1+j, u-j), j=1..u))     end: a:= proc(n) option remember; `if`(irem(n, 2, 'r')=0,       b(n, 0)-(-1)^r, add((-1)^j*b(n-2*j, 0), j=0..r))     end: seq(a(n), n=1..30);  # Alois P. Heinz, Dec 09 2016 MATHEMATICA b[u_, o_] := b[u, o] = If[u + o == 0, 1, Sum[b[o - 1 + j, u - j], {j, 1, u}]]; a[n_] := a[n] = If[{q, r} = QuotientRemainder[n, 2]; r == 0, b[n, 0] - (-1)^q, Sum[(-1)^j*b[n - 2*j, 0], {j, 0, q}]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Dec 20 2016, after Alois P. Heinz *) CROSSREFS Cf. A000111, A162978, A162980. Sequence in context: A102055 A232376 A263575 * A032174 A212267 A087801 Adjacent sequences:  A162974 A162975 A162976 * A162978 A162979 A162980 KEYWORD nonn AUTHOR Emeric Deutsch, Aug 06 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 15:16 EDT 2018. Contains 315270 sequences. (Running on oeis4.)