Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jul 21 2017 10:54:15
%S 1,2,1,4,15,62,257,1384,7679,50522,346113,2702764,22022143,199360982,
%T 1881735169,19391512144,207983607807,2404879675442,28880901505025,
%U 370371188237524,4922617151619071,69348874393137902,1010501269355233281
%N Number of fixed points in all reverse alternating (i.e., up-down) permutations of {1,2,...,n}.
%C a(n) = Sum_{k>=0} k*A162980(n,k).
%C a(2n+1) = A162978(2n+1).
%H Alois P. Heinz, <a href="/A162977/b162977.txt">Table of n, a(n) for n = 1..485</a>
%H R. P. Stanley, <a href="http://math.mit.edu/~rstan/transparencies/ida.pdf">Alternating permutations</a>, Talk slides.
%F a(2n) = E(2n)-(-1)^n; a(2n+1) = Sum_{j=0..n}(-1)^j*E(2n+1-2j), where E(i) = A000111(i) are the Euler (or up-down) numbers.
%e a(4) = 4 because in the 5 (=A000111(4)) up-down permutations of {1,2,3,4}, namely 1423, 1324, 3412, 2413, and 2314, we have a total of 1+2+0+0+1=4 fixed points.
%p E := sec(x)+tan(x): Eser := series(E, x = 0, 30): for n from 0 to 27 do E[n] := factorial(n)*coeff(Eser, x, n) end do: for n to 12 do a[2*n] := E[2*n]-(-1)^n end do: for n from 0 to 12 do a[2*n+1] := add((-1)^j*E[2*n+1-2*j], j = 0 .. n) end do: seq(a[n], n = 1 .. 25);
%p # second Maple program:
%p b:= proc(u, o) option remember; `if`(u+o=0, 1,
%p add(b(o-1+j, u-j), j=1..u))
%p end:
%p a:= proc(n) option remember; `if`(irem(n, 2, 'r')=0,
%p b(n, 0)-(-1)^r, add((-1)^j*b(n-2*j, 0), j=0..r))
%p end:
%p seq(a(n), n=1..30); # _Alois P. Heinz_, Dec 09 2016
%t b[u_, o_] := b[u, o] = If[u + o == 0, 1, Sum[b[o - 1 + j, u - j], {j, 1, u}]]; a[n_] := a[n] = If[{q, r} = QuotientRemainder[n, 2]; r == 0, b[n, 0] - (-1)^q, Sum[(-1)^j*b[n - 2*j, 0], {j, 0, q}]]; Table[a[n], {n, 1, 30}] (* _Jean-François Alcover_, Dec 20 2016, after _Alois P. Heinz_ *)
%Y Cf. A000111, A162978, A162980.
%K nonn
%O 1,2
%A _Emeric Deutsch_, Aug 06 2009