login
A232376
T(n,k)=Number of nXk 0..3 arrays with every 0 next to a 1, every 1 next to a 2 and every 2 next to a 3 horizontally, diagonally or antidiagonally, and no adjacent values equal
14
1, 2, 1, 4, 14, 1, 8, 74, 58, 1, 14, 296, 586, 230, 1, 26, 1130, 4404, 4550, 934, 1, 48, 4682, 32722, 63744, 36574, 3794, 1, 88, 19448, 259458, 927706, 957232, 292122, 15354, 1, 162, 79592, 2046700, 14326374, 27133338, 14297980, 2324142, 62266, 1, 298, 326810
OFFSET
1,2
COMMENTS
Table starts
.1.......2..........4............8..............14.................26
.1......14.........74..........296............1130...............4682
.1......58........586.........4404...........32722.............259458
.1.....230.......4550........63744..........927706...........14326374
.1.....934......36574.......957232........27133338..........825606450
.1....3794.....292122.....14297980.......789866870........47301712998
.1...15354....2324142....213082596.....22946925502......2706080691402
.1...62266...18574882...3180405572....667514680522....154987416800398
.1..252346..148225606..47457708756..19413840326186...8875595994390694
.1.1022806.1182879814.708101568772.564595278464614.508249649361525870
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) +7*a(n-2) +6*a(n-3) -2*a(n-4) -3*a(n-5) +2*a(n-6) +a(n-7)
k=3: [order 15]
k=4: [order 22]
k=5: [order 64]
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2) +a(n-3) for n>4
n=2: [order 8] for n>9
n=3: [order 13] for n>14
n=4: [order 60] for n>61
EXAMPLE
Some solutions for n=4 k=4
..0..1..2..1....2..1..2..1....2..3..2..3....2..1..0..3....3..2..0..2
..0..3..0..1....0..3..2..1....1..0..1..0....2..3..0..3....3..1..3..2
..2..1..0..3....2..3..2..1....1..2..3..0....2..3..0..3....2..1..0..1
..3..1..2..3....2..3..2..3....1..2..1..2....0..1..2..1....0..3..2..3
CROSSREFS
Row 1 is A135491(n-1)
Sequence in context: A066409 A006173 A102055 * A350739 A263575 A162977
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 23 2013
STATUS
approved