OFFSET
0,5
COMMENTS
The number 1/sqrt(3) - log(phi)/3575 (=0.577215664483...) is an approximation to Euler's constant (A001620) (=0.577215664901...).
M. Hudson found a similar Euler-Mascheroni constant approximation (see link), 1/sqrt(3)-1/7429 (=0.57721566157...).
LINKS
Karl V. Keller, Jr., Table of n, a(n) for n = 0..100000
Xavier Gourdon and Pascal Sebah, Collection of formulas for Euler's constant,Euler's constant.
Eric Weisstein's World of Mathematics, Beatty Sequence.
Eric Weisstein's World of Mathematics, Euler-Mascheroni Constant.
Eric Weisstein's World of Mathematics, Euler-Mascheroni Constant Approximations.
FORMULA
a(n) = floor(n*(1/sqrt(3) - log(phi)/3575)).
a(n) = A038128(n) for n < 58628.
EXAMPLE
For n=9, floor(9*(0.577215664483)) = floor(5.194940980347) = 5.
MATHEMATICA
Table[Floor[n (1/Sqrt@ 3 - Log[GoldenRatio]/3575)], {n, 0, 75}] (* Michael De Vlieger, Nov 12 2015 *)
PROG
(Python)
from sympy import floor, log, sqrt
for n in range(0, 101):print(floor(n*(1/sqrt(3)-log(1/2+sqrt(5)/2)/3575)), end=', ')
(PARI) {phi = (1+sqrt(5))/2}; vector(100, n, n--; floor(n*(1/sqrt(3) - log(phi)/3575))) \\ G. C. Greubel, Sep 05 2018
(Magma) phi:= (1+Sqrt(5))/2; [Floor(n*(1/Sqrt(3) - Log(phi)/3575)): n in [0..100]]; // G. C. Greubel, Sep 05 2018
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Karl V. Keller, Jr., Oct 21 2015
STATUS
approved