login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057358
a(n) = floor(4*n/7).
15
0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 14, 15, 16, 16, 17, 17, 18, 18, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 26, 27, 28, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 34, 35, 36, 36, 37, 37, 38, 38, 39, 40, 40, 41, 41, 42
OFFSET
0,5
COMMENTS
The cyclic pattern (and numerator of the gf) is computed using Euclid's algorithm for GCD.
REFERENCES
N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1994.
LINKS
FORMULA
G.f. x^2*(1+x^2+x^4+x^5) / ( (x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2 ) - Numerator corrected by R. J. Mathar, Feb 20 2011
Sum_{n>=2} (-1)^n/a(n) = (Pi - 2*log(sqrt(2)+1))/(4*sqrt(2)). - Amiram Eldar, Sep 30 2022
MATHEMATICA
Table[Floor[4*n/7], {n, 0, 50}] (* G. C. Greubel, Nov 02 2017 *)
PROG
(PARI) a(n)=4*n\7 \\ Charles R Greathouse IV, Sep 02 2015
(Magma) [Floor(4*n/7): n in [0..50]]; // G. C. Greubel, Nov 02 2017
KEYWORD
nonn,easy
AUTHOR
STATUS
approved