login
A057364
a(n) = floor(8*n/21).
15
0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 22, 22, 22, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 27, 27, 27, 28, 28, 28, 29
OFFSET
0,7
COMMENTS
The cyclic pattern (and numerator of the gf) is computed using Euclid's algorithm for GCD.
REFERENCES
N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1994.
LINKS
N. Dershowitz and E. M. Reingold, Calendrical Calculations Web Site
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,1,-1).
FORMULA
a(n) = a(n-1) + a(n-21) - a(n-22).
G.f.: x^3*(1+x)*(x^4 - x^3 + x^2 - x + 1)*(x^13 + x^11 + x^3 + 1) / ( (1 + x + x^2)*(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1)*(x-1)^2 ). [Numerator corrected by R. J. Mathar, Feb 20 2011]
MATHEMATICA
Table[Floor[8 n/21], {n, 0, 80}] (* Harvey P. Dale, Jun 14 2011 *)
PROG
(PARI) a(n)=8*n\21 \\ Charles R Greathouse IV, Jul 07 2011
(Magma) [floor(8*n/21): n in [0..50]]; // G. C. Greubel, Nov 02 2017
KEYWORD
nonn,easy
AUTHOR
STATUS
approved