login
A057359
a(n) = floor(5*n/7).
16
0, 0, 1, 2, 2, 3, 4, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 24, 25, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 32, 33, 34, 35, 35, 36, 37, 37, 38, 39, 40, 40, 41, 42, 42, 43, 44, 45, 45, 46, 47, 47, 48, 49, 50, 50, 51
OFFSET
0,4
COMMENTS
The cyclic pattern (and numerator of the gf) is computed using Euclid's algorithm for GCD.
REFERENCES
N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1994.
LINKS
FORMULA
G.f. x^2*(1+x+x^3+x^4+x^5) / ( (x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2 ). Numerator corrected Feb 20 2011
Sum_{n>=2} (-1)^n/a(n) = sqrt(10-2*sqrt(5))*Pi/10 + log(phi)/sqrt(5) - log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 30 2022
MATHEMATICA
Floor[5 Range[0, 75]/7] (* Harvey P. Dale, Mar 18 2011 *)
PROG
(PARI) a(n)=5*n\7 \\ Charles R Greathouse IV, Sep 02 2015
(Magma) [Floor(5*n/7): n in [0..50]]; // G. C. Greubel, Nov 02 2017
KEYWORD
nonn,easy
AUTHOR
STATUS
approved