This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061084 Fibonacci-type sequence based on subtraction: a(0) = 1, a(1) = 2 and a(n) = a(n-2)-a(n-1). 19
 1, 2, -1, 3, -4, 7, -11, 18, -29, 47, -76, 123, -199, 322, -521, 843, -1364, 2207, -3571, 5778, -9349, 15127, -24476, 39603, -64079, 103682, -167761, 271443, -439204, 710647, -1149851, 1860498, -3010349, 4870847, -7881196, 12752043, -20633239, 33385282, -54018521 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS If we drop 1 and start with 2 this is the Lucas sequence V(-1,-1). G.f.: (2+x)/(1+x-x^2). In this case a(n) is also the trace of A^(-n), where A is the Fibomatrix ((1,1), (1,0)). - Mario Catalani (mario.catalani(AT)unito.it), Aug 17 2002 The positive sequence with g.f. (1+x-2x^2)/(1-x-x^2) gives the diagonal sums of the Riordan array (1+2x,x/(1-x)). - Paul Barry, Jul 18 2005 Pisano period lengths:  1, 3, 8, 6, 4, 24, 16, 12, 24, 12, 10, 24, 28, 48, 8, 24, 36, 24, 18, 12, .... (is this A106291?). - R. J. Mathar, Aug 10 2012 LINKS Indranil Ghosh, Table of n, a(n) for n = 0..4771 (terms 0..500 from T. D. Noe) Tanya Khovanova, Recursive Sequences Q. Wang, On generalized Lucas sequences, Contemp. Math. 531 (2010) 127-141, Table 2 (k=2). Wikipedia, Lucas sequence Index entries for linear recurrences with constant coefficients, signature (-1,1). FORMULA a(n) = (-1)^(n-1) * A000204(n-1). O.g.f.: (3*x+1)/(1+x-x^2). - Len Smiley, Dec 02 2001 a(n) = A039834(n+1)+3*A039834(n). - R. J. Mathar, Oct 30 2015 EXAMPLE a(6) = a(4)-a(5) = -4 - 7 = -11. MATHEMATICA LinearRecurrence[{-1, 1}, {1, 2}, 40] (* Harvey P. Dale, Nov 22 2011 *) PROG (Haskell) a061084 n = a061084_list !! n a061084_list = 1 : 2 : zipWith (-) a061084_list (tail a061084_list) -- Reinhard Zumkeller, Feb 01 2014 (PARI) a(n)=([0, 1; 1, -1]^n*[1; 2])[1, 1] \\ Charles R Greathouse IV, Feb 09 2017 CROSSREFS Cf. A061083 for division, A000301 for multiplication and A000045 for addition - the common Fibonacci numbers. Sequence in context: A160191 A268613 A268615 * A000032 A267551 A055391 Adjacent sequences:  A061081 A061082 A061083 * A061085 A061086 A061087 KEYWORD sign,easy,nice AUTHOR Ulrich Schimke (ulrschimke(AT)aol.com) EXTENSIONS Corrected by T. D. Noe, Oct 25 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 17:50 EDT 2018. Contains 312817 sequences. (Running on oeis4.)