Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jan 28 2020 12:13:11
%S 1,1,3,12,57,312,1950,13848,111069,998064,9957186,109305240,
%T 1309637274,17006109072,237888664572,3566114897520,57030565449765,
%U 969154436550240,17439499379433690,331268545604793240,6624013560942038670,139080391965533653200,3059323407592802838180,70355685298375014175440
%N Expansion of Sum_{k>=0} k!*((1 - sqrt(1 - 4*x))/2)^k.
%C Catalan transform of A000142 (factorial numbers).
%C From _Peter Bala_, Jan 27 2020: (Start)
%C This sequence is the main diagonal of the lower triangular array formed by putting the sequence of factorial numbers in the first column (k = 0) of the array and then completing the triangle using the relation T(n,k) = T(n-1,k) + T(n,k-1) for k >= 1.
%C 1
%C 1 1
%C 2 3 3
%C 6 9 12 12
%C 24 33 45 57 57
%C 120 153 198 255 312 312
%C ...
%C Alternatively, the sequence can be obtained by multiplying the sequence of factorial numbers by the array A106566.
%C (End)
%H P. Bala, <a href="/A001517/a001517.pdf">A note on the Catalan transform of a sequence</a>
%F G.f.: 1 /(1 - x*c(x)/(1 - x*c(x)/(1 - 2*x*c(x)/(1 - 2*x*c(x)/(1 - 3*x*c(x)/(1 - 3*x*c(x)/(1 - ...))))))), a continued fraction, where c(x) = g.f. of Catalan numbers (A000108).
%F Sum_{n>=0} a(n)*(x*(1 - x))^n = g.f. of A000142.
%F a(n) = (1/n) * Sum_{k=1..n} binomial(2*n-k-1,n-k)*k*k! for n > 0.
%F a(n) ~ exp(1) * n!. - _Vaclav Kotesovec_, Aug 10 2019
%t nmax = 23; CoefficientList[Series[Sum[k! ((1 - Sqrt[1 - 4 x])/2)^k, {k, 0, nmax}], {x, 0, nmax}], x]
%t nmax = 23; CoefficientList[Series[1/(1 + ContinuedFractionK[-Floor[(k + 1)/2] (1 - Sqrt[1 - 4 x])/2, 1, {k, 1, nmax}]), {x, 0, nmax}], x]
%t Join[{1}, Table[1/n Sum[Binomial[2n - k - 1, n - k] k k!, {k, n}], {n, 23}]]
%Y Cf. A000108, A000142, A013999, A100100, A106566, A307496.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Apr 10 2019