login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A302101 G.f. A(x) satisfies: A(x) = 1 + x * (A(x) + 4*x*A'(x)) / (A(x) + x*A'(x)). 2
1, 1, 3, 12, 57, 318, 2190, 20298, 265557, 4683954, 102511182, 2622117720, 75857421522, 2436766744728, 85885843375992, 3292322691248310, 136306472824555725, 6059583761048830290, 287832499902612461910, 14546503423112218184280, 779260996651844076919230, 44104811071523533909346100, 2629647430438623322437523380, 164732335319839237173383723220 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare to: C(x) = 1 + x*C(x) * (C(x) + 2*x*C'(x)) / (C(x) + x*C'(x)) holds when C(x) = 1 + x*C(x)^2 is a g.f. of the Catalan numbers (A000108).

If G(x) = 1 + x * (G(x) + y*x*G'(x)) / (G(x) + x*G'(x)), then negative coefficients are present in the power series expansion of G(x) when y < t where constant t = 3.79622607101172329768286422639804088884917373644497484011451904053377050...

LINKS

Robert Israel, Table of n, a(n) for n = 0..382

FORMULA

G.f. A(x) satisfies: A'(x) = A(x) * (A(x) - 1 - x) / (x*(1 + 4*x - A(x))).

G.f.: A(x) = exp( Integral (A(x) - 1 - x) / (x*(1 + 4*x - A(x))) dx ).

EXAMPLE

G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 57*x^4 + 318*x^5 + 2190*x^6 + 20298*x^7 + 265557*x^8 + 4683954*x^9 + 102511182*x^10 + ...

such that A(x) = 1 + x * (A(x) + 4*x*A'(x)) / (A(x) + x*A'(x)).

MAPLE

G:= 1:

for n from 1 to 30 do

  G:= convert(series(1+x*(G+4*x*diff(G, x))/(G +x*diff(G, x)), x, n+1), polynom);

od:

seq(coeff(G, x, n), n=0..30); # Robert Israel, Apr 08 2018

MATHEMATICA

nmax = 23; sol = {a[0] -> 1};

Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x*(A[x] + 4*x*A'[x])/(A[x] + x*A'[x])) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];

sol /. Rule -> Set;

a /@ Range[0, nmax] (* Jean-Fran├žois Alcover, Nov 01 2019 *)

PROG

(PARI) /* Differential Equation */

{a(n) = my(A=1); for(i=0, n, A = 1 + x*(A + 4*x*A')/(A + x*A' +x^2*O(x^n))); polcoeff(A, n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A302102.

Sequence in context: A185618 A027710 A307495 * A279271 A293469 A009248

Adjacent sequences:  A302098 A302099 A302100 * A302102 A302103 A302104

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Apr 07 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 18:37 EST 2019. Contains 329865 sequences. (Running on oeis4.)