login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293469
a(n) = Sum_{k=0..n} (2*k-1)!!*binomial(2*n-k, n).
2
1, 3, 12, 57, 330, 2436, 23226, 277389, 3966534, 65517210, 1220999208, 25279328958, 575024187192, 14247595540542, 381846383109030, 11004598454925405, 339324532631899110, 11146022446431209490, 388535338484934710040, 14324570939127320452350, 556887682690152668745660
OFFSET
0,2
FORMULA
a(n) = [x^n] 1/((1 - x)^(n+1)*(1 - x/(1 - 2*x/(1 - 3*x/(1 - 4*x/(1 - 5*x/(1 - 6*x/(1 - ...)))))))), a continued fraction.
a(n) = Gamma(n+1/2)*hypergeom([1/2, 1, -n], [-2*n], 2)*4^n/(n!*sqrt(Pi)). - Robert Israel, Oct 09 2017
a(n) ~ 2^(n + 1/2) * n^n / exp(n - 1/2). - Vaclav Kotesovec, Oct 18 2017
MAPLE
seq(add(doublefactorial(2*k-1)*binomial(2*n-k, n), k=0..n), n=0..40); # Robert Israel, Oct 09 2017
MATHEMATICA
Table[Sum[(2 k - 1)!! Binomial[2 n - k, n], {k, 0, n}], {n, 0, 20}]
Table[SeriesCoefficient[(1/(1 - x)^(n + 1)) 1/(1 + ContinuedFractionK[-k x, 1, {k, 1, n}]), {x, 0, n}], {n, 0, 20}]
Table[SeriesCoefficient[(1/(1 - x)^(n + 1)) Sum[(2 k - 1)!! x^k, {k, 0, n}], {x, 0, n}], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 09 2017
STATUS
approved