OFFSET
0,2
LINKS
FORMULA
a(n) = [x^n] 1/((1 - x)^(n+1)*(1 - x/(1 - x/(1 - 2*x/(1 - 2*x/(1 - 3*x/(1 - 3*x/(1 - ...)))))))), a continued fraction.
a(n) = Gamma(n+1/2)*4^n*hypergeom([1,1,-n],[-2n],1)/(sqrt(Pi)*n!). - Robert Israel, Oct 09 2017
a(n) ~ exp(1) * n!. - Vaclav Kotesovec, Oct 18 2017
MAPLE
seq(simplify( GAMMA(n+1/2)*4^n*hypergeom([1, 1, -n], [-2*n], 1)/(sqrt(Pi)*n!)), n=0..30); # Robert Israel, Oct 09 2017
MATHEMATICA
Table[Sum[k! Binomial[2 n - k, n], {k, 0, n}], {n, 0, 22}]
Table[Sum[Gamma[k + 1] Gamma[2 n - k + 1]/(Gamma[n + 1] Gamma[n - k + 1]), {k, 0, n}], {n, 0, 22}]
Table[SeriesCoefficient[(1/(1 - x)^(n + 1)) 1/(1 + ContinuedFractionK[-Floor[(k + 1)/2] x, 1, {k, 1, n}]), {x, 0, n}], {n, 0, 22}]
Table[SeriesCoefficient[(1/(1 - x)^(n + 1)) Sum[k! x^k, {k, 0, n}], {x, 0, n}], {n, 0, 22}]
A293468[n_] := DifferenceRoot[Function[{a, k}, {(k+1)(k-n)a[k] + (k(n-2)-k^2+3n)
a[k+1] + (k-2n) a[k+2] == 0, a[0] == 0, a[1] == Binomial[2n, n]}]][1+n];
Table[A293468[n], {n, 0, 22}] (* Peter Luschny, Oct 09 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 09 2017
STATUS
approved