|
|
A293465
|
|
a(n) = Sum_{k=0..n} (-1)^k * 2^k * q(k), where q(k) is A000009 (partitions into distinct parts).
|
|
2
|
|
|
1, -1, 3, -13, 19, -77, 179, -461, 1075, -3021, 7219, -17357, 44083, -103373, 257075, -627661, 1469491, -3511245, 8547379, -19764173, 47344691, -112038861, 261254195, -611161037, 1435659315, -3329070029, 7743892531, -18025911245, 41566759987, -95872193485
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
|
|
FORMULA
|
a(n) ~ (-1)^n * 2^(n-1) * exp(Pi*sqrt(n/3)) / (3^(5/4) * n^(3/4)).
a(n) ~ (-1)^n * 2/3 * 2^n * A000009(n).
|
|
MATHEMATICA
|
Table[Sum[(-1)^k * 2^k * PartitionsQ[k], {k, 0, n}], {n, 0, 30}]
|
|
CROSSREFS
|
Cf. A025147, A293466.
Sequence in context: A158016 A281998 A294676 * A353251 A271924 A354427
Adjacent sequences: A293462 A293463 A293464 * A293466 A293467 A293468
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Vaclav Kotesovec, Oct 09 2017
|
|
STATUS
|
approved
|
|
|
|