login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353251
a(0) = 1, a(n) = harmonic_mean(a(n-1), n), where harmonic_mean(p, q) = 2/(1/p + 1/q); denominators.
1
1, 1, 3, 13, 19, 143, 223, 2521, 4201, 21563, 37691, 737161, 1328521, 31463413, 57821173, 21404465, 39854897, 1267947073, 2383173185, 85428430547, 808549483039, 1535039635999, 2921975382559, 128230606647497, 245195521274057, 2348840786785261, 4508193056814061
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Harmonic Mean.
Eric Weisstein's World of Mathematics, Lerch Transcendent.
Wikipedia, Harmonic mean.
FORMULA
a(n) = denominator(1/(1/2^n - Re(Phi(2, 1, n+1)))), where Phi(z, s, a) is the Lerch transcendent.
EXAMPLE
a(0) = 1,
a(1) = 2/(1/1 + 1/1) = 1,
a(2) = 2/(1/1 + 1/2) = 4/3,
a(3) = 2/(1/(4/3) + 1/3) = 24/13,
a(4) = 2/(1/(24/13) + 1/4) = 48/19, etc.
This sequence gives the denominators: 1, 1, 3, 13, 19, ...
MATHEMATICA
Table[1/(1/2^n - Re[LerchPhi[2, 1, n + 1]]), {n, 0, 26}] // Denominator (* or *)
a[0] = 1; a[n_Integer] := a[n] = 2/(1/a[n-1] + 1/n); Table[a[n], {n, 0, 26}] // Denominator
CROSSREFS
Cf. A353250 (numerators).
Sequence in context: A281998 A294676 A293465 * A271924 A354427 A178712
KEYWORD
nonn,frac
AUTHOR
STATUS
approved