login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242376
Numerators of b(n) = b(n-1)/2 + 1/(2*n), b(0)=0.
4
0, 1, 1, 5, 1, 4, 13, 151, 16, 83, 73, 1433, 647, 15341, 28211, 10447, 608, 19345, 18181, 651745, 771079, 731957, 2786599, 122289917, 14614772, 140001721, 134354573, 774885169, 745984697, 41711914513, 80530073893, 4825521853483
OFFSET
0,4
COMMENTS
See the denominators in A241519.
b(n) = 0, 1/2, 1/2, 5/12, 1/3, 4/15, 13/60, 151/840, 16/105, 83/630, 73/630, ... (Ta0(n) in A241269) is an autosequence of the first kind.
LINKS
FORMULA
0 = b(n)*(+b(n+1) - 4*b(n+2) + 4*b(n+3)) + b(n+1)*(-2*b(n+1) + 9*b(n+2) - 10*b(n+3)) + b(n+2)*(-2*b(n+2) + 4*b(n+3)) if n>=0. - Michael Somos, May 26 2014
b(n) = -Re(Phi(2, 1, n + 1)). - Eric W. Weisstein, Dec 11 2017
G.f. for b(n): -log(1-x)/(2*(1-x/2)). - Vladimir Kruchinin, Nov 14 2022
EXAMPLE
0, 1/2, 1/2, 5/12, 1/3, 4/15, 13/60, 151/840, 16/105, 83/630, 73/630, ...
MATHEMATICA
Table[-Re[LerchPhi[2, 1, n + 1]], {n, 0, 20}] // Numerator (* Eric W. Weisstein, Dec 11 2017 *)
-Re[LerchPhi[2, 1, Range[20]]] // Numerator (* Eric W. Weisstein, Dec 11 2017 *)
RecurrenceTable[{b[n] == b[n - 1]/2 + 1/(2 n), b[0] == 0}, b[n], {n, 20}] // Numerator (* Eric W. Weisstein, Dec 11 2017 *)
PROG
(Sage)
def a():
b = n = 0
while True:
yield numerator(b)
n = n + 1
b = (b/2 + 1/(2*n)) # Ralf Stephan, May 18 2014
CROSSREFS
Cf. A241519 (denominators).
Sequence in context: A316248 A180132 A286593 * A307393 A231923 A105664
KEYWORD
nonn,frac
AUTHOR
Paul Curtz, May 12 2014
EXTENSIONS
a(14)-a(25) from Jean-François Alcover, May 12 2014
Corrected a(22) and a(24), more terms from Ralf Stephan, May 18 2014
STATUS
approved