login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307393
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-4))/((1-x)^k-x^k).
4
1, 1, 5, 1, 4, 16, 1, 4, 11, 42, 1, 4, 10, 26, 99, 1, 4, 10, 21, 57, 219, 1, 4, 10, 20, 42, 120, 466, 1, 4, 10, 20, 36, 84, 247, 968, 1, 4, 10, 20, 35, 64, 169, 502, 1981, 1, 4, 10, 20, 35, 57, 120, 340, 1013, 4017, 1, 4, 10, 20, 35, 56, 93, 240, 682, 2036, 8100
OFFSET
0,3
LINKS
FORMULA
A(n,k) = Sum_{j=0..floor(n/k)} binomial(n+3,k*j+3).
A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} binomial(i+1,k*j+1) * binomial(n-i+1,k*j+1).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
5, 4, 4, 4, 4, 4, 4, 4, ...
16, 11, 10, 10, 10, 10, 10, 10, ...
42, 26, 21, 20, 20, 20, 20, 20, ...
99, 57, 42, 36, 35, 35, 35, 35, ...
219, 120, 84, 64, 57, 56, 56, 56, ...
466, 247, 169, 120, 93, 85, 84, 84, ...
968, 502, 340, 240, 165, 130, 121, 120, ...
MATHEMATICA
T[n_, k_] := Sum[Binomial[n+3, k*j + 3], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)
CROSSREFS
Columns 1-5 give A002662(n+3), A125128(n+1), A111927(n+3), A000749(n+3), A139748(n+3).
Sequence in context: A180132 A286593 A242376 * A231923 A105664 A094882
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Apr 07 2019
STATUS
approved