The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A139748 a(n) = Sum_{ k >= 0} binomial(n,5*k+3). 13
 0, 0, 0, 1, 4, 10, 20, 35, 57, 93, 165, 330, 715, 1574, 3381, 6995, 13990, 27370, 53143, 103702, 204820, 409640, 826045, 1669801, 3368259, 6765175, 13530350, 26985675, 53774932, 107232053, 214146295, 428292590, 857417220, 1717012749, 3437550076 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS From Gary W. Adamson, Mar 14 2009: (Start) M^n * [1,0,0,0,0] = [A139398(n), A139761(n), a(n), A139714(n), A133476(n)] where M = a 5 X 5 matrix [1,1,0,0,0; 0,1,1,0,0; 0,0,1,1,0; 0,0,0,1,1; 1,0,0,0,1]. Sum of terms = 2^n. Example: M^6 * [1,0,0,0,0] = [7, 15, 20, 15, 7]; sum = 64. (End) {A139398, A133476, A139714, A139748, A139761} is the difference analog of the hyperbolic functions of order 5, {h_1(x), h_2(x), h_3(x), h_4(x), h_5 (x)}. For a definition see [Erdelyi] and the Shevelev link. - Vladimir Shevelev, Jun 28 2017 REFERENCES A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..3000 Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017. Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,2). FORMULA G.f.: x^3*(x-1)/((2*x-1)*(x^4-2*x^3+4*x^2-3*x+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009 a(n) = round((2/5)*(2^(n-1) + phi^n*cos(Pi*(n-6)/5))), where phi is the golden ratio and round(x) is the integer nearest to x. - Vladimir Shevelev, Jun 28 2017 a(n+m) = a(n)*H_1(m) + H_3(n)*H_2(m) + H_2(n)*H_3(m) + H_1(n)*a(m) + H_5(n)*H_5(m), where H_1=A139398, H_2=A133476, H_3=A139714, H_5=A139761. - Vladimir Shevelev, Jun 28 2017 MAPLE a:= n-> (Matrix(5, (i, j)-> `if`((j-i) mod 5 in [0, 1], 1, 0))^n)[3, 1]: seq(a(n), n=0..35); # Alois P. Heinz, Dec 21 2015 MATHEMATICA CoefficientList[Series[x^3 (x - 1)/((2 x - 1) (x^4 - 2 x^3 + 4 x^2 - 3 x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 21 2015 *) PROG (PARI) a(n) = sum(k=0, n\5, binomial(n, 5*k+3)); \\ Michel Marcus, Dec 21 2015 (PARI) x='x+O('x^100); concat([0, 0, 0], Vec(x^3*(x-1)/((2*x-1)*(x^4-2*x^3+4*x^2-3*x+1)))) \\ Altug Alkan, Dec 21 2015 (Magma) I:=[0, 0, 0, 1, 4]; [n le 5 select I[n] else 5*Self(n-1)- 10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+2*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 21 2015 CROSSREFS Cf. A049016, A133476, A139714. Sequence in context: A057319 A034223 A266353 * A137359 A134987 A261636 Adjacent sequences: A139745 A139746 A139747 * A139749 A139750 A139751 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Jun 13 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 01:03 EST 2022. Contains 358594 sequences. (Running on oeis4.)