login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266353
Expansion of b(3)*b(4)/(1 - 2*x + x^2 - x^3 + x^4), where b(k) = (1-x^k)/(1-x).
2
1, 4, 10, 20, 35, 57, 89, 136, 205, 306, 454, 671, 989, 1455, 2138, 3139, 4606, 6756, 9907, 14525, 21293, 31212, 45749, 67054, 98278, 144039, 211105, 309395, 453446, 664563, 973970, 1427428, 2092003, 3065985, 4493425, 6585440, 9651437, 14144874, 20730326, 30381775
OFFSET
0,2
COMMENTS
This is the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_17 - see Table 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Table 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).
LINKS
Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, arXiv:0906.1596 [math.RT], 2009, page 31.
Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, Journal of Nonlinear Mathematical Physics, Volume 17, Supplement 1 (2010), page 186.
FORMULA
G.f.: (1 + x)*(1 + x^2)*(1 + x + x^2)/((1 - x)*(1 - x - x^3)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) for n>5.
a(n) = a(n-1) + a(n-3) + 12 for n>4. - Greg Dresden, Feb 09 2020
MATHEMATICA
CoefficientList[Series[(1 + x) (1 + x^2) (1 + x + x^2)/((1 - x) (1 - x - x^3)), {x, 0, 40}], x]
PROG
(Magma) /* By definition: */ m:=40; R<x>:=PowerSeriesRing(Integers(), m); b:=func<k|(1-x^k)/(1-x)>; Coefficients(R!(b(3)*b(4)/(1-2*x+x^2-x^3+x^4)));
CROSSREFS
Cf. similar sequences listed in A265055.
Sequence in context: A301208 A057319 A034223 * A139748 A373963 A137359
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Dec 28 2015
STATUS
approved