login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of b(3)*b(4)/(1 - 2*x + x^2 - x^3 + x^4), where b(k) = (1-x^k)/(1-x).
2

%I #21 Sep 08 2022 08:46:15

%S 1,4,10,20,35,57,89,136,205,306,454,671,989,1455,2138,3139,4606,6756,

%T 9907,14525,21293,31212,45749,67054,98278,144039,211105,309395,453446,

%U 664563,973970,1427428,2092003,3065985,4493425,6585440,9651437,14144874,20730326,30381775

%N Expansion of b(3)*b(4)/(1 - 2*x + x^2 - x^3 + x^4), where b(k) = (1-x^k)/(1-x).

%C This is the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_17 - see Table 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Table 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).

%H Colin Barker, <a href="/A266353/b266353.txt">Table of n, a(n) for n = 0..1000</a>

%H Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, <a href="http://arxiv.org/abs/0906.1596">The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains</a>, arXiv:0906.1596 [math.RT], 2009, page 31.

%H Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, <a href="http://dx.doi.org/10.1142/S1402925110000842">The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains</a>, Journal of Nonlinear Mathematical Physics, Volume 17, Supplement 1 (2010), page 186.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-1).

%F G.f.: (1 + x)*(1 + x^2)*(1 + x + x^2)/((1 - x)*(1 - x - x^3)).

%F a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) for n>5.

%F a(n) = a(n-1) + a(n-3) + 12 for n>4. - _Greg Dresden_, Feb 09 2020

%t CoefficientList[Series[(1 + x) (1 + x^2) (1 + x + x^2)/((1 - x) (1 - x - x^3)), {x, 0, 40}], x]

%o (Magma) /* By definition: */ m:=40; R<x>:=PowerSeriesRing(Integers(), m); b:=func<k|(1-x^k)/(1-x)>; Coefficients(R!(b(3)*b(4)/(1-2*x+x^2-x^3+x^4)));

%Y Cf. similar sequences listed in A265055.

%K nonn,easy

%O 0,2

%A _Bruno Berselli_, Dec 28 2015