login
A049016
Expansion of 1/((1-x)^5 - x^5).
15
1, 5, 15, 35, 70, 127, 220, 385, 715, 1430, 3004, 6385, 13380, 27370, 54740, 107883, 211585, 416405, 826045, 1652090, 3321891, 6690150, 13455325, 26985675, 53971350, 107746282, 214978335, 429124630, 857417220, 1714834440, 3431847189
OFFSET
0,2
FORMULA
G.f.: 1/((1-x)^5-x^5) = 1/( (1-2*x)*(1-3*x+4*x^2-2*x^3+x^4) ).
a(10*n+3) = A078789(5*n+3).
a(10*n+5) = A078789(5*n+4).
a(n) = (-1)^n * A000750(n).
Binomial transform of expansion of (1+x)^4/(1-x^5), or (1, 4, 6, 4, 1, 1, 4, 6, 4, 1, ...). - Paul Barry, Mar 19 2004
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 2*a(n-5). - Paul Curtz, May 24 2008
G.f.: -1/( x^5 - 1 + 5*x/Q(0) ) where Q(k) = 1 + k*(x+1) + 5*x - x*(k+1)*(k+6)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 15 2013
MATHEMATICA
CoefficientList[Series[1/((1-x)^5-x^5), {x, 0, 30}], x] (* or *) LinearRecurrence[ {5, -10, 10, -5, 2}, {1, 5, 15, 35, 70}, 40] (* Harvey P. Dale, Jan 20 2014 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/((1-x)^5-x^5) )); // G. C. Greubel, Apr 11 2023
(SageMath)
def A049016_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x)^5-x^5) ).list()
A049016_list(30) # G. C. Greubel, Apr 11 2023
CROSSREFS
Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), A000749 (m=4), this sequence (m=5), A192080 (m=6), A049017 (m=7), A290995 (m=8), A306939 (m=9).
Sequence in context: A373936 A140227 A264925 * A139761 A360047 A373964
KEYWORD
nonn,easy
STATUS
approved