OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..3000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,2).
FORMULA
G.f.: 1/((1-x)^5-x^5) = 1/( (1-2*x)*(1-3*x+4*x^2-2*x^3+x^4) ).
a(10*n+3) = A078789(5*n+3).
a(10*n+5) = A078789(5*n+4).
a(n) = (-1)^n * A000750(n).
Binomial transform of expansion of (1+x)^4/(1-x^5), or (1, 4, 6, 4, 1, 1, 4, 6, 4, 1, ...). - Paul Barry, Mar 19 2004
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 2*a(n-5). - Paul Curtz, May 24 2008
G.f.: -1/( x^5 - 1 + 5*x/Q(0) ) where Q(k) = 1 + k*(x+1) + 5*x - x*(k+1)*(k+6)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 15 2013
MATHEMATICA
CoefficientList[Series[1/((1-x)^5-x^5), {x, 0, 30}], x] (* or *) LinearRecurrence[ {5, -10, 10, -5, 2}, {1, 5, 15, 35, 70}, 40] (* Harvey P. Dale, Jan 20 2014 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/((1-x)^5-x^5) )); // G. C. Greubel, Apr 11 2023
(SageMath)
def A049016_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x)^5-x^5) ).list()
A049016_list(30) # G. C. Greubel, Apr 11 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved