login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/((1-x)^5 - x^5).
15

%I #30 Apr 11 2023 08:42:18

%S 1,5,15,35,70,127,220,385,715,1430,3004,6385,13380,27370,54740,107883,

%T 211585,416405,826045,1652090,3321891,6690150,13455325,26985675,

%U 53971350,107746282,214978335,429124630,857417220,1714834440,3431847189

%N Expansion of 1/((1-x)^5 - x^5).

%H Seiichi Manyama, <a href="/A049016/b049016.txt">Table of n, a(n) for n = 0..3000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,2).

%F G.f.: 1/((1-x)^5-x^5) = 1/( (1-2*x)*(1-3*x+4*x^2-2*x^3+x^4) ).

%F a(10*n+3) = A078789(5*n+3).

%F a(10*n+5) = A078789(5*n+4).

%F a(n) = (-1)^n * A000750(n).

%F Binomial transform of expansion of (1+x)^4/(1-x^5), or (1, 4, 6, 4, 1, 1, 4, 6, 4, 1, ...). - _Paul Barry_, Mar 19 2004

%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 2*a(n-5). - _Paul Curtz_, May 24 2008

%F G.f.: -1/( x^5 - 1 + 5*x/Q(0) ) where Q(k) = 1 + k*(x+1) + 5*x - x*(k+1)*(k+6)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Mar 15 2013

%t CoefficientList[Series[1/((1-x)^5-x^5),{x,0,30}],x] (* or *) LinearRecurrence[ {5,-10,10,-5,2},{1,5,15,35,70},40] (* _Harvey P. Dale_, Jan 20 2014 *)

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/((1-x)^5-x^5) )); // _G. C. Greubel_, Apr 11 2023

%o (SageMath)

%o def A049016_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( 1/((1-x)^5-x^5) ).list()

%o A049016_list(30) # _G. C. Greubel_, Apr 11 2023

%Y Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), A000749 (m=4), this sequence (m=5), A192080 (m=6), A049017 (m=7), A290995 (m=8), A306939 (m=9).

%Y Cf. A000750, A078789.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_