login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264925
G.f.: 1 / Product_{n>=0} (1 - x^(n+5))^((n+1)*(n+2)*(n+3)*(n+4)/4!).
4
1, 0, 0, 0, 0, 1, 5, 15, 35, 70, 127, 215, 360, 605, 1080, 2003, 3890, 7570, 14715, 27960, 52255, 95705, 173295, 311060, 557400, 999032, 1795880, 3235130, 5835955, 10521060, 18931287, 33956485, 60692510, 108087835, 191883595, 339724144, 600203700, 1058605775, 1864535670, 3279862975, 5762287759, 10109925380
OFFSET
0,7
COMMENTS
Number of partitions of n objects of 5 colors, where each part must contain at least one of each color. [Conjecture - see comment by Franklin T. Adams-Watters in A052847].
LINKS
FORMULA
G.f.: exp( Sum_{n>=1} ( x^n/(1-x^n) )^5 /n ).
G.f.: exp( Sum_{n>=1} L(n) * x^n/n ), where L(n) = Sum_{d|n} d*(d-1)*(d-2)*(d-3)*(d-4)/4!.
a(n) ~ Pi^(95/288) / (2 * 3^(527/576) * 7^(239/1728) * n^(1103/1728)) * exp(-25*Zeta'(-1)/12 - log(2*Pi)/2 + 595*Zeta(3)/(48*Pi^2) - 29291*Zeta(5) / (128*Pi^4) - 2480625 * Zeta(3) * Zeta(5)^2 / (2*Pi^12) + 72930375 * Zeta(5)^3 / (2*Pi^14) - 1063324867500 * Zeta(5)^5/Pi^24 - 5*Zeta'(-3)/12 + (41 * 7^(1/6) * Pi/(768*sqrt(3)) - 2625 * sqrt(3) * 7^(1/6) * Zeta(3) * Zeta(5)/(2*Pi^7) + 540225 * sqrt(3) * 7^(1/6) * Zeta(5)^2/(16*Pi^9) - 4740474375 * sqrt(3) * 7^(1/6) * Zeta(5)^4/(4*Pi^19)) * n^(1/6) + (-25 * 7^(1/3) * Zeta(3)/(4*Pi^2) + 735 * 7^(1/3) * Zeta(5) /(8*Pi^4) - 3969000 * 7^(1/3) * Zeta(5)^3 / Pi^14) * n^(1/3) + (7*sqrt(7/3)*Pi/24 - 4725 * sqrt(21) * Zeta(5)^2 / Pi^9) * sqrt(n) - 45 * 7^(2/3) * Zeta(5)/(2*Pi^4) * n^(2/3) + 2*sqrt(3)*Pi / (5*7^(1/6)) * n^(5/6)). - Vaclav Kotesovec, Dec 09 2015
EXAMPLE
G.f.: A(x) = 1 + x^5 + 5*x^6 + 15*x^7 + 35*x^8 + 70*x^9 + 127*x^10 + 215*x^11 + 360*x^12 +...
where
1/A(x) = (1-x^5) * (1-x^6)^5 * (1-x^7)^15 * (1-x^8)^35 * (1-x^9)^70 * (1-x^10)^126 * (1-x^11)^210 * (1-x^12)^330 * (1-x^13)^495 *...
Also,
log(A(x)) = (x/(1-x))^5 + (x^2/(1-x^2))^5/2 + (x^3/(1-x^3))^5/3 + (x^4/(1-x^4))^5/4 + (x^5/(1-x^5))^5/5 + (x^6/(1-x^6))^5/6 +...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[1/(1-x^k)^((k-4)*(k-3)*(k-2)*(k-1)/24), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 09 2015 *)
PROG
(PARI) {a(n) = my(A=1); A = prod(k=0, n, 1/(1 - x^(k+4) +x*O(x^n) )^((k+1)*(k+2)*(k+3)/3!) ); polcoeff(A, n)}
for(n=0, 50, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); A = exp( sum(k=1, n+1, (x^k/(1 - x^k))^4 /k +x*O(x^n) ) ); polcoeff(A, n)}
for(n=0, 50, print1(a(n), ", "))
(PARI) {L(n) = sumdiv(n, d, d*(d-1)*(d-2)*(d-3)*(d-4)/4!)}
{a(n) = my(A=1); A = exp( sum(k=1, n+1, L(k) * x^k/k +x*O(x^n) ) ); polcoeff(A, n)}
for(n=0, 50, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 28 2015
STATUS
approved