login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264928
G.f.: exp( Sum_{n>=1} x^n/n * (1 - 3*x^n)/(1 - x^n) ).
1
1, 1, -1, -3, -4, -2, 1, 5, 8, 8, 6, 2, -4, -10, -13, -15, -14, -10, -3, 5, 12, 18, 23, 25, 23, 17, 9, 1, -9, -19, -28, -34, -37, -35, -30, -24, -15, -3, 10, 24, 35, 43, 48, 50, 50, 46, 38, 26, 12, -4, -20, -34, -45, -55, -64, -70, -71, -67, -58, -46, -31, -15, 2, 18, 35, 53, 68, 80, 89, 93, 91, 85, 75, 63, 49, 33, 15, -7, -31, -53, -72, -88, -101, -109, -114, -114, -111, -105, -96, -82, -63
OFFSET
0,4
LINKS
FORMULA
G.f.: ( Product_{n>=1} 1 - x^n )^2 / (1-x)^3.
EXAMPLE
G.f.: A(x) = 1 + x - x^2 - 3*x^3 - 4*x^4 - 2*x^5 + x^6 + 5*x^7 + 8*x^8 + 8*x^9 + 6*x^10 + 2*x^11 - 4*x^12 - 10*x^13 - 13*x^14 - 15*x^15 +...
where
log(A(x)) = x*(1-3*x)/(1-x) + x^2/2*(1-3*x^2)/(1-x^2) + x^3/3*(1-3*x^3)/(1-x^3) + x^4/4*(1-3*x^4)/(1-x^4) + x^5/5*(1-3*x^5)/(1-x^5) +...
Also,
A(x)*(1-x)^3 = (1-x)^2 * (1-x^2)^2 * (1-x^3)^2 * (1-x^4)^2 * (1-x^5)^3 *...
PROG
(PARI) {a(n) = my(A=1); A = exp( sum(k=1, n+1, (x^k*(1 - 3*x^k)/(1 - x^k)) /k +x*O(x^n) ) ); polcoeff(A, n)}
for(n=0, 120, print1(a(n), ", "))
CROSSREFS
Sequence in context: A136374 A303869 A081246 * A323874 A326765 A096411
KEYWORD
sign,look
AUTHOR
Paul D. Hanna, Dec 14 2015
STATUS
approved