OFFSET
1,1
COMMENTS
This is the 2^n+1 conjecture and is easily proved to converge to 1. The number of steps required to reach 1 is always 2n+2. Since (2^(n)+1+1)/2 = 2^(n-1)+1 (2^(n-1)+1+1)/2 = 2^(n-2)+1 .... (2^(n-n+1)+1+1)/2 = 2^(n-n)+1 = 2 2/2 = 1 thus 1 is guaranteed.
EXAMPLE
n = 5 -> 33,34,17,18,9,10,5,6,3,4,2,1
MAPLE
pxpr(n) = { for(x=1, n, x1=2^x+1; print1(x1" "); while(x1>1, if(x1%2==0, x1/=2, x1 = x1+1); print1(x1" "); ) ) }
MATHEMATICA
Table[NestWhileList[If[EvenQ[#], #/2, #+1]&, 2^n+1, #!=1&], {n, 10}]//Flatten (* Harvey P. Dale, Jan 05 2019 *)
CROSSREFS
KEYWORD
easy,nonn,tabf
AUTHOR
Cino Hilliard, Apr 19 2003
EXTENSIONS
Corrected and extended by Harvey P. Dale, Jan 05 2019
STATUS
approved