The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000391 Euler transform of A000332. (Formerly M4144 N1721) 17
 1, 6, 21, 71, 216, 672, 1982, 5817, 16582, 46633, 128704, 350665, 941715, 2499640, 6557378, 17024095, 43756166, 111433472, 281303882, 704320180, 1749727370, 4314842893, 10565857064, 25700414815, 62115621317, 149214574760, 356354881511, 846292135184 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..500 A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy] Srivatsan Balakrishnan, Suresh Govindarajan and Naveen S. Prabhakar, On the asymptotics of higher-dimensional partitions, arXiv:1105.6231, p.21. N. J. A. Sloane, Transforms FORMULA a(n) ~ Pi^(3/160) / (2 * 3^(243/320) * 7^(83/960) * n^(563/960)) * exp(Zeta'(-1)/4 - 143 * Zeta(3) / (240 * Pi^2) + 53461 * Zeta(5) / (3200 * Pi^4) + 107163 * Zeta(3) * Zeta(5)^2 / (2*Pi^12) - 24754653 * Zeta(5)^3 / (10*Pi^14) + 413420708484 * Zeta(5)^5 / (5*Pi^24) + Zeta'(-3)/4 + (-847 * 7^(1/6) * Pi / (19200 * sqrt(3)) - 189 * sqrt(3) * 7^(1/6) * Zeta(3) * Zeta(5) / (2*Pi^7) + 305613 * sqrt(3) * 7^(1/6) * Zeta(5)^2 / (80*Pi^9) - 614365479 * sqrt(3) * 7^(1/6) * Zeta(5)^4 / (4*Pi^19)) * n^(1/6) + (3 * 7^(1/3) * Zeta(3) / (4*Pi^2) - 693 * 7^(1/3) * Zeta(5) / (40*Pi^4) + 857304 * 7^(1/3) * Zeta(5)^3 / Pi^14) * n^(1/3) + (11 * sqrt(7/3) * Pi / 120 - 1701 * sqrt(21) * Zeta(5)^2 / Pi^9) * sqrt(n) + 27 * 7^(2/3) * Zeta(5) / (2*Pi^4) * n^(2/3) + 2*sqrt(3)*Pi / (5*7^(1/6)) * n^(5/6)). - Vaclav Kotesovec, Mar 12 2015 MAPLE with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> binomial(n+3, 4)): seq(a(n), n=1..30); # Alois P. Heinz, Sep 08 2008 MATHEMATICA nn = 50; b = Table[Binomial[n, 4], {n, 4, nn + 4}]; Rest[CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x]] (* T. D. Noe, Jun 21 2012 *) nmax=50; Rest[CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)*(k+2)*(k+3)/24), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Mar 11 2015 *) PROG (PARI) a(n)=if(n<0, 0, polcoeff(exp(sum(k=1, n, x^k/(1-x^k)^5/k, x*O(x^n))), n)) /* Joerg Arndt, Apr 16 2010 */ CROSSREFS Cf. A000041, A000219, A000294, A000335, A000417, A000428, A255965. Sequence in context: A101904 A022814 A000390 * A360090 A107660 A200665 Adjacent sequences: A000388 A000389 A000390 * A000392 A000393 A000394 KEYWORD nonn AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 05:06 EDT 2023. Contains 363139 sequences. (Running on oeis4.)